【題目】如圖,點E是正方形ABCD的邊BC延長線上一點,聯(lián)結DE,過頂點BBFDE,垂足為F,BF交邊DC于點G

1)求證:GDAB=DFBG;

2)聯(lián)結CF,求證:∠CFB=45°

【答案】1)證明見解析;(2)證明見解析.

【解析】試題分析:(1)先證明△BGC∽△DGF,然后根據(jù)相似三角形的性質(zhì)列比例式整理即可;(2連接BD、CF,由△BGC∽△DGF可得,變形得,可證△BGD∽△CGF從而∠BDG=CFG,再根據(jù)正方形的性質(zhì)求出∠BDG即可.

證明:(1∵四邊形ABCD是正方形

∴∠BCD=ADC=90°,AB=BC,

BFDE,

∴∠GFD=90°

∴∠BCD=GFD,

∵∠BGC=FGD

∴△BGC∽△DGF,

,

DGBC=DFBG,

AB=BC

DGAB=DFBG;

2)如圖,連接BDCF,

∵△BGC∽△DGF,

,

又∵∠BGD=CGF,

∴△BGD∽△CGF,

∴∠BDG=CFG,

∵四邊形ABCD是正方形,BD是對角線,

,

∴∠CFG=45°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A是反比例函數(shù)y=(x>0)圖象上一點,過點Ax軸的平行線,交反比例函數(shù)y= (x>0)的圖象于點B,連接OA、OB,若△OAB的面積為2,則k的值為___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1分別與x軸、y軸交于點B、C,且與直線l2交于點A.

(1)求出點A的坐標

(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的解析式

(3)在(2)的條件下,設P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】周末,小明父子晨起鍛煉身體,兩人同時從家出發(fā),小明跑步的速度為每分鐘200米,爸爸跑步速度是150米,出發(fā)后15分鐘后,小明到達廣場,立即以一定的速度按原路線返回,3分鐘后與爸爸相遇,爸爸與小明仍按小明返回時的速度返回家,下面的圖象反應的是父子兩人離家的距離與離家時間的關系,觀察圖回答問題;

1)圖中a=________________,圖中B的坐標為_________________;

2)求返回時直線AC的解析式:

3)求運動過程中父子兩人何時相距250米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,點D,E分別在AC,BC上,且CDE=B,將CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為治理污水,甲乙兩區(qū)都需要各自鋪設一段污水排放管道。甲乙兩區(qū)八月份都各鋪了米,在九月份和十月份中,甲區(qū)的工作量平均每月增長,乙區(qū)則平均每月減少。

1)九月份甲鋪設了____________米排污管,乙鋪設了_____________米排污管;(用含字母的代數(shù)式表示)

2)如果,那么十月份甲區(qū)比乙區(qū)多鋪多少米排污管?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫推理理由

如圖:EFAD,∠1=∠2,∠BAC70°,把求∠AGD的過程填寫完整.

證明:∵EFAD

∴∠2 ( )

又∵∠1=∠2

∴∠1=∠3

AB ( )

∴∠BAC 180°( )

又∵∠BAC70°

∴∠AGD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級全體學生在5名教師的帶領下去公園秋游,公園的門票為每人30.現(xiàn)有兩種優(yōu)惠方案,甲方案:帶隊老師免費,學生按8折收費;乙方案:師生都按7.5折收費.

(1)若有n名學生,用含n的代數(shù)式表示兩種優(yōu)惠方案各需多少元?

(2)當n=70時,采用哪種方案更優(yōu)惠?

(3)當n=100時,采用哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BOx軸的負半軸上,∠BOC=60°,頂點C的坐標為(m,3),反比例函數(shù)y=的圖象與菱形對角線AO交于點D,連接BD,當BDx軸時,k的值是_____

查看答案和解析>>

同步練習冊答案