【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃用這兩種原料全部生產(chǎn)A、B兩種產(chǎn)品共50件,生產(chǎn)A、B兩種產(chǎn)品與所需原料情況如下表所示:
原料型號(hào) | 甲種原料(千克) | 乙種原料(千克) |
A產(chǎn)品(每件) | 9 | 3 |
B產(chǎn)品(每件) | 4 | 10 |
(1)該工廠生產(chǎn)A、B兩種產(chǎn)品有哪幾種方案?
(2)若生成一件A產(chǎn)品可獲利80元,生產(chǎn)一件B產(chǎn)品可獲利120元,怎樣安排生產(chǎn)可獲得最大利潤(rùn)?
【答案】
(1)
解:設(shè)工廠可安排生產(chǎn)x件A產(chǎn)品,則生產(chǎn)(50﹣x)件B產(chǎn)品
由題意得:
,
解得:30≤x≤32的整數(shù).
(2)
解:方案(一)A,30件,B,20件時(shí),
20×120+30×80=4800(元).
方案(二)A,31件,B,19件時(shí),
19×120+31×80=4760(元).
方案(三)A,32件,B,18件時(shí),
18×120+32×80=4720(元).
故方案(一)A,30件,B,20件利潤(rùn)最大.
【解析】(1)設(shè)工廠可安排生產(chǎn)x件A產(chǎn)品,則生產(chǎn)(50﹣x)件B產(chǎn)品,根據(jù)不能多于原料的做為不等量關(guān)系可列不等式組求解;
(2)可以分別求出三種方案比較即可.
【考點(diǎn)精析】關(guān)于本題考查的一元一次不等式組的應(yīng)用,需要了解1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫(xiě)出問(wèn)題答案才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙3人聚會(huì),每人帶了一件禮物,將這3件禮物分別放在3個(gè)完全相同的盒子里,每人隨機(jī)抽取一個(gè)禮盒(裝有禮物的盒子)
(1)下列事件是必然事件的是 A 乙沒(méi)有抽到自己帶來(lái)的禮物B 乙恰好抽到自己帶來(lái)的禮物C 乙抽到一件禮物D 只有乙抽到自己帶來(lái)的禮物
(2)甲、乙、丙3人抽到的都不是自己帶來(lái)的禮物(記為事件A),請(qǐng)列出事件A的所有可能的結(jié)果,并求事件A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為支持國(guó)家南水北調(diào)工程建設(shè),小王家由原來(lái)養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場(chǎng)調(diào)查得知,種植草莓不超過(guò)20畝時(shí),所得利潤(rùn)y(元)與種植面積m(畝)滿足關(guān)系式y(tǒng)=1500m;超過(guò)20畝時(shí),y=1380m+2400.而當(dāng)種植櫻桃的面積不超過(guò)15畝時(shí),每畝可獲得利潤(rùn)1800元;超過(guò)15畝時(shí),每畝獲得利潤(rùn)z(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)中的一種).
x(畝) | 20 | 25 | 30 | 35 |
z(元) | 1700 | 1600 | 1500 | 1400 |
(1)設(shè)小王家種植x畝櫻桃所獲得的利潤(rùn)為P元,直接寫(xiě)出P關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)如果小王家計(jì)劃承包40畝荒山種植草莓和櫻桃,當(dāng)種植櫻桃面積x(畝)滿足0<x<20時(shí),求小王家總共獲得的利潤(rùn)w(元)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】父親節(jié)快到了,明明準(zhǔn)備為爸爸煮四個(gè)大湯圓作早點(diǎn):一個(gè)芝麻餡,一個(gè)水果餡,兩個(gè)花生餡,四個(gè)湯圓除內(nèi)部餡料不同外,其它一切均相同.
(1)
求爸爸吃前兩個(gè)湯圓剛好都是花生餡的概率;
(2)若給爸爸再增加一個(gè)花生餡的湯圓,則爸爸吃前兩個(gè)湯圓都是花生餡的可能性是否會(huì)增大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:
①b2>4ac;②2a+b=0;③a+b+c>0;④若點(diǎn)B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2 ,
其中正確結(jié)論是( 。
A.②④
B.①④
C.①③
D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蘋(píng)果生產(chǎn)基地,用30名工人進(jìn)行采摘或加工蘋(píng)果,每名工人只能做其中一項(xiàng)工作.蘋(píng)果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋(píng)果加工成罐頭出售.直接出售每噸獲利4000元;加工成罐頭出售每噸獲利10000元.采摘的工人每人可以采摘蘋(píng)果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進(jìn)行蘋(píng)果采摘,全部售出后,總利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式.
(2)如何分配工人才能獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】梧州市特產(chǎn)批發(fā)市場(chǎng)有龜苓膏粉批發(fā),其中A品牌的批發(fā)價(jià)是每包20元,B品牌的批發(fā)價(jià)是每包25元,小王需購(gòu)買A、B兩種品牌的龜苓膏共1000包.
(1)若小王按需購(gòu)買A、B兩種品牌龜苓膏粉共用22000元,則各購(gòu)買多少包?
(2)憑會(huì)員卡在此批發(fā)市場(chǎng)購(gòu)買商品可以獲得8折優(yōu)惠,會(huì)員卡費(fèi)用為500元.若小王購(gòu)買會(huì)員卡并用此卡按需購(gòu)買1000包龜苓膏粉,共用了y元,設(shè)A品牌買了x包,請(qǐng)求出y與x之間的函數(shù)關(guān)系式.
(3)在2中,小王共用了20000元,他計(jì)劃在網(wǎng)店包郵銷售這批龜苓膏粉,每包龜苓膏粉小王需支付郵費(fèi)8元,若每包銷售價(jià)格A品牌比B品牌少5元,請(qǐng)你幫他計(jì)算,A品牌的龜苓膏粉每包定價(jià)不低于多少元時(shí)才不虧本(運(yùn)算結(jié)果取整數(shù))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面內(nèi)直角坐標(biāo)系中,直線y=2x+4分別交x軸,y軸于點(diǎn)A,C,點(diǎn)D(m,2)在直線AC上,點(diǎn)B在x軸正半軸上,且OB=3OC,點(diǎn)E是y軸上任意一點(diǎn),記點(diǎn)E為(0,n).
(1)求點(diǎn)D的坐標(biāo)及直線BC的解析式;
(2)連結(jié)DE,將線段DE繞點(diǎn)D按順時(shí)針旋轉(zhuǎn)90°得線段DG,作正方形DEFG,是否存在n的值,使正方形的頂點(diǎn)F落在△ABC的邊上?若存在,求出所有滿足條件的n的值;若不存在,說(shuō)明理由.
(3)作點(diǎn)E關(guān)于AC的對(duì)稱點(diǎn)E′,當(dāng)n為何值時(shí),AE′分別與AC,BC,AB垂直?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com