【題目】如圖,矩形ABCD中,AD=20,AB=32,點(diǎn)E為DC上一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊,當(dāng)點(diǎn)D的對(duì)應(yīng)點(diǎn)F落在矩形ABCD的對(duì)稱軸上時(shí),則DE的長(zhǎng)為_____
【答案】10或.
【解析】
過(guò)點(diǎn)F作MN⊥AB于點(diǎn)N,MN交CD于點(diǎn)M,如圖,由矩形有兩條對(duì)稱軸可知要分兩種情況考慮,根據(jù)折疊的特性可找出各邊的關(guān)系,然后在Rt△AFN與Rt△EMF中,利用勾股定理得出關(guān)于DE長(zhǎng)度的方程,解方程即可得出結(jié)果.
解:過(guò)點(diǎn)F作MN⊥AB于點(diǎn)N,MN交CD于點(diǎn)M,如圖所示.
設(shè)DE=a,則EF=a.
∵矩形有兩條對(duì)稱軸,∴分兩種情況考慮:
①當(dāng)DM=CM時(shí),AN=DM=CD=AB=16,AD=AF=20,
在Rt△AFN中,由勾股定理可知:NF==12,
∴MF=MN﹣NF=AD﹣NF=8,EM=DM﹣DE=16﹣a,
∵EF2=EM2+MF2,即a2=(16﹣a)2+64,
解得:a=10;
②當(dāng)MF=NF時(shí),MF=NF=MN=AD=10,
在Rt△AFN中,由勾股定理可知:AN==10,
∴EM=DM﹣DE=AN﹣DE=10﹣a,
∵EF2=EM2+MF2,即a2=(10﹣a)2+102,
解得:a=.
綜上知:DE=10或.
故答案為:10或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=12,AM,BN是⊙O的兩條切線,DC切⊙O于E,交BN于C,設(shè)AD=x,BC=y.
(1)求y與x的函數(shù)關(guān)系式;
(2)若x,y是2t2-30t+m=0的兩實(shí)根,求x,y的值;
(3)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問(wèn)題:
例題:求代數(shù)式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4﹣x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上建一個(gè)長(zhǎng)方形花園ABCD,花園一邊靠墻,另三邊用總長(zhǎng)為20m的柵欄圍成.如圖,設(shè)AB=x(m),請(qǐng)問(wèn):當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.
(1)如圖1,E,G分別是OB,OC上的點(diǎn),CE與DG的延長(zhǎng)線相交于點(diǎn)F.若DF⊥CE,求證:OE=OG;
(2)如圖2,H是BC上的點(diǎn),過(guò)點(diǎn)H作EH⊥BC,交線段OB于點(diǎn)E,連結(jié)DH交CE于點(diǎn)F,交OC于點(diǎn)G.若OE=OG,
①求證:∠ODG=∠OCE;
②當(dāng)AB=1時(shí),求HC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以邊為直徑的⊙經(jīng)過(guò)點(diǎn),是⊙上一點(diǎn),連結(jié)交于點(diǎn),且,.
(1)試判斷與⊙的位置關(guān)系,并說(shuō)明理由;
(2)若點(diǎn)是弧的中點(diǎn),已知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點(diǎn)A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點(diǎn)B,D.若直線y=x+m與C1、C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( 。
A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),大孔的水面寬度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角△ABC中,小明進(jìn)行了如下的尺規(guī)作圖:
①分別以點(diǎn)A、B為圓心,以大于AB的長(zhǎng)為半徑作弧,兩弧分別相交于點(diǎn)P、Q;
②作直線PQ分別交邊AB、BC于點(diǎn)E、D.
(1)小明所求作的直線DE是線段AB的 ;
(2)聯(lián)結(jié)AD,AD=7,sin∠DAC=,BC=9,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com