【題目】已知菱形ABCD的邊長(zhǎng)為6,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,OE⊥AB,垂足為點(diǎn)E,AC=4,那么sin∠AOE= .
【答案】
【解析】解:∵菱形對(duì)角線(xiàn)互相垂直,∴∠OEA=∠AOB,
∵∠OAE=∠BAO,
∴△OAE∽△ABO,
∴∠AOE=∠ABO,
∵AO= AC=2,AB=6,
∴sin∠AOE=sin∠ABO= = .
所以答案是: .
【考點(diǎn)精析】利用菱形的性質(zhì)和銳角三角函數(shù)的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對(duì)角線(xiàn)互相垂直,并且每一條對(duì)角線(xiàn)平分一組對(duì)角;菱形被兩條對(duì)角線(xiàn)分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線(xiàn)長(zhǎng)的積的一半;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,點(diǎn)E在AD邊上運(yùn)動(dòng),且不與點(diǎn)A和點(diǎn)D重合,連結(jié)CE,過(guò)點(diǎn)C作CF⊥CE交AB的延長(zhǎng)線(xiàn)于點(diǎn)F,EF交BC于點(diǎn)G.
(1)求證:△CDE≌△CBF;
(2)當(dāng)DE= 時(shí),求CG的長(zhǎng);
(3)連結(jié)AG,在點(diǎn)E運(yùn)動(dòng)過(guò)程中,四邊形CEAG能否為平行四邊形?若能,求出此時(shí)DE的長(zhǎng);若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某種電動(dòng)汽車(chē)的性能,對(duì)這種電動(dòng)汽車(chē)進(jìn)行了抽檢,將一次充電后行駛的里程數(shù)分為A,B,C,D四個(gè)等級(jí),其中相應(yīng)等級(jí)的里程依次為200千米,210千米,220千米,230千米,獲得如下不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)問(wèn)這次被抽檢的電動(dòng)汽車(chē)共有幾輛?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)估計(jì)這種電動(dòng)汽車(chē)一次充電后行駛的平均里程數(shù)為多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù) 的圖象如圖所示,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1 , A2 , A3 , …,A2008在y軸的正半軸上,點(diǎn)B1 , B2 , B3 , …,B2008在二次函數(shù) 位于第一象限的圖象上,若△A0B1A1 , △A1B2A2 , △A2B3A3 , …,△A2007B2008A2008都為等邊三角形,則△A2007B2008A2008的邊長(zhǎng)= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三邊.
(1)當(dāng)拋物線(xiàn)與x軸只有一個(gè)交點(diǎn)時(shí),判斷△ABC是什么形狀;
(2)當(dāng)x=﹣ 時(shí),該函數(shù)有最大值 ,判斷△ABC是什么形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BE∥CF,它們依次交直線(xiàn)l1、l2于點(diǎn)A、B、C和點(diǎn)D、E、F.
(1)如果AB=6,BC=8,DF=21,求DE的長(zhǎng);
(2)如果DE:DF=2:5,AD=9,CF=14,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對(duì)應(yīng)值如表:
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | … |
y | … | 4 | 0 | ﹣2 | ﹣2 | 0 | 4 | … |
下列說(shuō)法正確的是( )
A.拋物線(xiàn)的開(kāi)口向下
B.當(dāng)x>﹣3時(shí),y隨x的增大而增大
C.二次函數(shù)的最小值是﹣2
D.拋物線(xiàn)的對(duì)稱(chēng)軸是x=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明是個(gè)愛(ài)動(dòng)腦筋的孩子,他在學(xué)完與圓有關(guān)的角圓周角、圓心角后,意猶未盡,又查閱到了與圓有關(guān)的另一種角﹣﹣﹣﹣﹣﹣弦切角.請(qǐng)同學(xué)們先仔細(xì)閱讀下面的材料,再完成后面的問(wèn)題.
材料:頂點(diǎn)在圓上,一邊與圓相交,另一邊與圓相切的角叫做弦切角.如圖1,弧 是弦切角∠PAB所夾的弧,他發(fā)現(xiàn)弦切角與它所夾的弧所對(duì)的圓周角有關(guān)系.
問(wèn)題1:如圖2,直線(xiàn)DB切⊙O于點(diǎn)A,∠PCA是圓周角,當(dāng)圓心O位于邊AC上時(shí),
求證:∠PAD=∠PCA,請(qǐng)你寫(xiě)出這個(gè)證明過(guò)程.
問(wèn)題拓展:
如果圓心O不在∠PCA的邊上,∠PAD=∠PCA還成立嗎?如圖3,當(dāng)圓心O在∠PCA的內(nèi)部時(shí),小明證明了這個(gè)結(jié)論是成立的.他的思路是:作直線(xiàn)AE,聯(lián)結(jié)PE,由問(wèn)題1的結(jié)論可知∠PAD=∠PEA,而∠PCA=∠PEA,從而證明∠PAD=∠PC.
問(wèn)題2:如圖4,當(dāng)圓心O在∠PCA的外部時(shí),∠PAD=∠PCA仍然成立.請(qǐng)你仿照小明的思路證明這個(gè)結(jié)論.
運(yùn)用:如圖5,AD是△ABC中∠BAC的平分線(xiàn),經(jīng)過(guò)點(diǎn)A的⊙O與BC切于點(diǎn)D,與AB、AC分別相交于E、F.求證:EF∥BC.(提示:可以直接使用本題中的結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三年級(jí)(1)班要舉行一場(chǎng)畢業(yè)聯(lián)歡會(huì).規(guī)定每個(gè)同學(xué)分別轉(zhuǎn)動(dòng)下圖中兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤(pán)A、B(轉(zhuǎn)盤(pán)A被均勻分成三等份.每份分別標(biāo)上1.2,3三個(gè)數(shù)宇.轉(zhuǎn)盤(pán)B被均勻分成二等份.每份分別標(biāo)上4,5兩個(gè)數(shù)字).若兩個(gè)轉(zhuǎn)盤(pán)停止后指針?biāo)竻^(qū)域的數(shù)字都為偶數(shù)(如果指針恰好指在分格線(xiàn)上.那么重轉(zhuǎn)直到指針指向某一數(shù)字所在區(qū)域?yàn)橹梗畡t這個(gè)同學(xué)要表演唱歌節(jié)目.請(qǐng)求出這個(gè)同學(xué)表演唱歌節(jié)目的概率(要求用畫(huà)樹(shù)狀圖或列表方法求解)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com