【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù).

人類會作圓并且真正了解圓的性質(zhì)是在2000多年前,由我國的墨子給出圓的概念:“一中同長也.”.意思說,圓有一個圓心,圓心到圓周的長都相等.這個定義比希臘數(shù)學(xué)家歐幾里得給圓下的定義要早100年.與圓有關(guān)的定理有很多,弦切角定理就是其中之一.

我們把頂點在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角.

弦切角定理:弦切角的度數(shù)等于它所夾弧所對的圓周角度數(shù).

下面是弦切角定理的部分證明過程:

證明:如圖①,AB與⊙O相切于點A.當(dāng)圓心O在弦AC上時,容易得到∠CAB90°,所以弦切角∠BAC的度數(shù)等于它所夾半圓所對的圓周角度數(shù).

如圖②,AB與⊙O相切于點A,當(dāng)圓心O在∠BAC的內(nèi)部時,過點A作直徑AD交⊙O于點D,在上任取一點E,連接ECED,EA,則∠CED=∠CAD

任務(wù):

(1)請按照上面的證明思路,寫出該證明的剩余部分;

(2)如圖③,AB與⊙O相切于點A.當(dāng)圓心O在∠BAC的外部時,請寫出弦切角定理的證明過程.

【答案】(1)詳見解析;(2)詳見解析

【解析】

1)利用圓周角定理得到∠DEA90°,再根據(jù)同弧所對的圓周角相等得到∠CED=∠CAD,最后利用等式的性質(zhì)即可得到∠CEA=∠CAB

2)通過∠C=90°說明∠CFA+∠FAC90°,再根據(jù)同角的余角相等得到∠CAB=∠CFA即可.

解:(1)∵AD是⊙O直徑,

∴∠DEA90°

AB與⊙O相切于點A,

∴∠DAB90°

∴∠CED+∠DEA=∠CAD+∠DAB,即∠CEA=∠CAB

∴弦切角的度數(shù)等于它所夾弧所對的圓周角度數(shù);

2)證明:如圖,過點A作直徑AF交⊙O于點F,連接FC

AF是直徑,

∴∠ACF90°

∴∠CFA+∠FAC90°

AB與⊙O相切于點A

∴∠FAB90°

∴∠CAB+∠FAC90°

∴∠CAB=∠CFA,

即弦切角的度數(shù)等于它所夾弧所對的圓周角度數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC10BC16,點DBC邊上的一個動點(點D不與點B、點C重合).以D為頂點作∠ADE=∠B,射線DEAC邊于點E,過點AAFAD交射線DE于點F

1)求證:ABCEBDCD;

2)當(dāng)DF平分∠ADC時,求AE的長;

3)當(dāng)△AEF是等腰三角形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綿陽某公司銷售統(tǒng)計了每個銷售員在某月的銷售額,繪制了如下折線統(tǒng)計圖和扇形統(tǒng)計圖:

設(shè)銷售員的月銷售額為x(單位:萬元)。銷售部規(guī)定:當(dāng)x<16時,為不稱職,當(dāng) 時為基本稱職,當(dāng) 時為稱職,當(dāng) 時為優(yōu)秀”.根據(jù)以上信息,解答下列問題:

(1)補全折線統(tǒng)計圖和扇形統(tǒng)計圖;

(2)求所有稱職優(yōu)秀的銷售員銷售額的中位數(shù)和眾數(shù);

(3)為了調(diào)動銷售員的積極性,銷售部決定制定一個月銷售額獎勵標(biāo)準(zhǔn),凡月銷售額達到或超過這個標(biāo)準(zhǔn)的銷售員將獲得獎勵。如果要使得所有稱職優(yōu)秀的銷售員的一半人員能獲獎,月銷售額獎勵標(biāo)準(zhǔn)應(yīng)定為多少萬元(結(jié)果去整數(shù))?并簡述其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個轉(zhuǎn)盤被分成等分,每一份上各寫有一個數(shù)字,隨機轉(zhuǎn)動轉(zhuǎn)盤次,第一次轉(zhuǎn)到的數(shù)字?jǐn)?shù)字為十位數(shù)字,第二次轉(zhuǎn)到的數(shù)字為個位數(shù)字,次轉(zhuǎn)動后組成一個兩位數(shù)(若指針停在等分線上則重新轉(zhuǎn)一次)

用畫樹狀圖的方法求出轉(zhuǎn)動后所有可能出現(xiàn)的兩位數(shù)的個數(shù).

甲、乙兩人做游戲,約定得到的兩位數(shù)是偶數(shù)時甲勝,否則乙勝,這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)接于⊙O,點EDC的中點,BE的延長線交⊙O于點F,若⊙O的半徑為,則BF的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BDAM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B60°

1)求證:AM是⊙O的切線;

2)若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進某種茶壺、茶杯共200個進行銷售,其中茶杯的數(shù)量是茶壺數(shù)量的5倍還多20個.銷售方式有兩種:(1)單個銷售;(2)成套銷售.相關(guān)信息如下表:

進價(元/

單個售價(元/

成套售價(元/套)

茶壺

24

a

55

茶杯

4

a﹣30

備注:(1)一個茶壺和和四個茶杯配成一套(如圖);

(2)利潤=(售價﹣進價)×數(shù)量

(1)該商店購進茶壺和茶杯各有多少個?

(2)已知甲顧客花180元購買的茶壺數(shù)量與乙顧客花30元購買的茶杯數(shù)量相同.

①求表中a的值.

②當(dāng)該商店還剩下20個茶壺和100個茶杯時,商店將這些茶壺和茶杯中的一部分按成套銷售,其余按單個銷售,這120個茶壺和茶杯全部售出后所得的利潤為365元.問成套銷售了多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將正方形ABCD按圖1所示置于平面直角坐標(biāo)系中,AD邊與x軸重合,頂點B,C位于x軸上方,將直線lyx3沿x軸向左以每秒1個單位長度的速度平移,在平移的過程中,該直線被正方形ABCD的邊所截得的線段長為m,平移的時間為t秒,mt的函數(shù)圖象如圖2所示,則a,b的值分別是(  )

A.6,B.6,C.7,7D.7,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O所在圓的圓心,∠AOB90°,點P上運動(不與點A,B重合),APOB延長線于點C,CDOP于點D.若OB2BC2,則PD的長是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案