【題目】如圖,AB為⊙O的直徑,CO⊥AB于O,D在⊙O上,連接BD,CD,延長CD與AB的延長線交于E,F(xiàn)在BE上,且FD=FE.

(1)求證:FD是⊙O的切線;
(2)若AF=8,tan∠BDF=,求EF的長.

【答案】
(1)

【解答】證明:連結(jié)OD,如圖,

∵CO⊥AB,

∴∠E+∠C=90°,

∵FE=FD,OD=OC,

∴∠E=∠FDE,∠C=∠ODC,

∴∠FDE+∠ODC=90°,

∴∠ODF=90°,

∴OD⊥DF,

∴FD是⊙O的切線;


(2)

解:連結(jié)AD,如圖,

∵AB為⊙O的直徑,

∴∠ADB=90°,

∴∠A+∠ABD=90°,

∵OB=OD,

∴∠OBD=∠ODB,

∴∠A+∠ODB=90°,

∵∠BDF+∠ODB=90°,

∴∠A=∠BDF,

而∠DFB=∠AFD,

∴△FBD∽△FDA,

,

在Rt△ABD中,tan∠A=tan∠BDF=,

,

∴DF=2,

∴EF=2.


【解析】

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點.
(1)求反比例函數(shù)的表達式及點B的坐標;
(2)在x軸上找一點P,使PA+PB的值最小,求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,G,E分別是正方形ABCD的邊AB,BC的點,且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:
①BE=GE; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正確的結(jié)論有( 。

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車輛,限速40千米/時,已知交警測速點M到該公路A點的距離為米,∠MAB=45°,∠MBA=30°(如圖所示),現(xiàn)有一輛汽車由A往B方向勻速行駛,測得此車從A點行駛到B點所用的時間為3秒.

(1)求測速點M到該公路的距離;
(2)通過計算判斷此車是否超速.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們將在直角坐標系中圓心坐標和半徑均為整數(shù)的圓稱為“整圓”.如圖,直線l:與x軸、y軸分別交于A、B,∠OAB=30°,點P在x軸上,⊙P與l相切,當P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是( 。

A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市團委在2015年3月初組成了300個學雷鋒小組,現(xiàn)從中隨機抽取6個小組在3月份做好事件數(shù)的統(tǒng)計情況如圖所示:

(1)這6個學雷鋒小組在2015年3月份共做好事多少件?
(2)補全條形統(tǒng)計圖;
(3)請估計該市300個學雷鋒小組在2015年3月份共做好事多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,分析下列五個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四邊形CDEF=S△ABF , 其中正確的結(jié)論有( 。

A.5個
B.4個
C.3個
D.2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在水平地面上豎立著一面墻AB,墻外有一盞路燈D.光線DC恰好通過墻的最高點B,且與地面形成37°角.墻在燈光下的影子為線段AC,并測得AC=5.5米.

(1)求墻AB的高度(結(jié)果精確到0.1米);(參考數(shù)據(jù):tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要縮短影子AC的長度,同時不能改變墻的高度和位置,請你寫出兩種不同的方法

查看答案和解析>>

同步練習冊答案