【題目】如圖:在中,,點、同時由兩點分別沿、方向向點勻速移動,它們的速度都是,設秒后的面積為面積的一半.則方程(一般形式)為:________

【答案】

【解析】

根據題意∠B=90°,可以得出△ABC面積為×AC×BC,△PCQ的面積為×PC×CQ,設出t秒后滿足要求,則根據△PCQ的面積是△ABC面積的一半列出等量關系列出方程即可.

x秒后△PBQ的面積是△ABC面積的一半,則可得此時PC=AC-AP=6-x,CQ=BC-BQ=8-x,
∴△ABC面積為×AC×BC=×6×8=24,△PCQ的面積為×PC×CQ=×(6-x)×(8-x),
∵△PCQ的面積是△ABC面積的一半,
×(6-x)×(8-x)=×24,
整理得:x2-14x+24=0,
故答案為:x2-14x+24=0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知∠1=∠2,則下列條件中不一定能使△ABC≌△ABD的是( )

A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面圖1、圖2、圖3各正方形中的四個數(shù)之間的變化規(guī)律,按照這樣的變化規(guī)律,圖n中的M應為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網絡公司推出了一系列上網包月業(yè)務,其中的一項業(yè)務是10M40元包240小時,且其中每月收取費用y(元)與上網時間x(小時)的函數(shù)關系如圖所示,小剛和小明家正好選擇了這項上網業(yè)務.

1)當x≥240時,求yx之間的函數(shù)關系式;

2)若小剛家10月份上網200小時,則他家應付多少元上網費?

3)若小明家10月份上網費用為62元,則他家該月的上網時間是多少小時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,中,,

從點開始沿邊向的速度移動,點點開始沿邊向點的速度移動.如果分別從,同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

點沿射線方向從點出發(fā)以的速度移動,點沿射線方向從點出發(fā)以的速度移動,、同時出發(fā),問幾秒后,的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”.

(1)概念理解:

如圖1,在ABC中,AC=6,BC=3,ACB=30°,試判斷ABC是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2,ABC等高底三角形,BC等底,作ABC關于BC所在直線的對稱圖形得到A'BC,連結AA′交直線BC于點D.若點BAA′C的重心,求的值.

(3)應用拓展:

如圖3,已知l1l2,l1l2之間的距離為2.“等高底ABC等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC倍.將ABC繞點C按順時針方向旋轉45°得到A'B'C,A′C所在直線交l2于點D.求CD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CFAD于點G,交BE于點H,下面說法中正確的序號是_____

①△ABE的面積等于△BCE的面積;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB3,AC5,ADBC邊上的中線,且AD2,延長AD到點E,使DEAD,連接CE

1)求證:△AEC是直角三角形.

2)求BC邊的長.

查看答案和解析>>

同步練習冊答案