【題目】如圖,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延長(zhǎng)AC至E,使CE=AC.
(1)求證:DE=DB;
(2)連接BE,試判斷△ABE的形狀,并說明理由.
【答案】(1)證明見解析(2)△ABE是等邊三角形
【解析】
(1)由直角三角形的性質(zhì)和角平分線得出∠DAB=∠ABC,得出DA=DB,再由線段垂直平分線的性質(zhì)得出DE=DA,即可得出結(jié)論;(2)由線段垂直平分線的性質(zhì)得出BA=BE,再由∠CAB=60°,即可得出△ABE是等邊三角形.
(1)證明:∵∠ACB=90°,∠ABC=30°,
∴BC⊥AE,∠CAB=60°,
∵AD平分∠CAB,
∴∠DAB=∠CAB=30°=∠ABC,
∴DA=DB,
∵CE=AC,
∴BC是線段AE的垂直平分線,
∴DE=DA,
∴DE=DB;
(2)△ABE是等邊三角形;理由如下:
連接BE,如圖:
∵BC是線段AE的垂直平分線,
∴BA=BE,
即△ABE是等腰三角形,
又∵∠CAB=60°,
∴△ABE是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,連接AC,拋物線y=x2﹣4x﹣2經(jīng)過A,B兩點(diǎn).
(1)求A點(diǎn)坐標(biāo)及線段AB的長(zhǎng);
(2)若點(diǎn)P由點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB邊向點(diǎn)B移動(dòng),1秒后點(diǎn)Q也由點(diǎn)A出發(fā)以每秒7個(gè)單位的速度沿AO,OC,CB邊向點(diǎn)B移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)也停止移動(dòng),點(diǎn)P的移動(dòng)時(shí)間為t秒.
①當(dāng)PQ⊥AC時(shí),求t的值;
②當(dāng)PQ∥AC時(shí),對(duì)于拋物線對(duì)稱軸上一點(diǎn)H,∠HOQ>∠POQ,求點(diǎn)H的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長(zhǎng);
(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對(duì)應(yīng)),求點(diǎn)M的坐標(biāo);
②若⊙M的半徑為 ,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加班長(zhǎng)競(jìng)選,需進(jìn)行演講答辯與民主測(cè)評(píng),民主測(cè)評(píng)時(shí)一人一票,按“優(yōu)秀、良好、一般”三選一投票.如圖是7位評(píng)委對(duì)小明“演講答辯”的評(píng)分統(tǒng)計(jì)圖及全班50位同學(xué)民主測(cè)評(píng)票數(shù)統(tǒng)計(jì)圖.
(1)求評(píng)委給小明演講答辯分?jǐn)?shù)的眾數(shù),以及民主測(cè)評(píng)為“良好”票數(shù)的扇形圓心角度數(shù);
(2)求小明的綜合得分是多少?
(3)在競(jìng)選中,小亮的民主測(cè)評(píng)得分為82分,如果他的綜合得分不小于小明的綜合得分,他的演講答辯得分至少要多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=45°,tan∠ACB= .如圖,把△ABC的一邊BC放置在x軸上,有OB=14,OC= ,AC與y軸交于點(diǎn)E.
(1)求AC所在直線的函數(shù)解析式;
(2)過點(diǎn)O作OG⊥AC,垂足為G,求△OEG的面積;
(3)已知點(diǎn)F(10,0),在△ABC的邊上取兩點(diǎn)P,Q,是否存在以O(shè),P,Q為頂點(diǎn)的三角形與△OFP全等,且這兩個(gè)三角形在OP的異側(cè)?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長(zhǎng)率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成2017年6月份的快遞投遞任務(wù)?如果不能,請(qǐng)問至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會(huì)上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(jī)(單位:m),繪制出如下的統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)圖1中a的值為 ;
(Ⅱ)求統(tǒng)計(jì)的這組初賽成績(jī)數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)這組初賽成績(jī),由高到低確定9人進(jìn)入復(fù)賽,請(qǐng)直接寫出初賽成績(jī)?yōu)?.65m的運(yùn)動(dòng)員能否進(jìn)入復(fù)賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下面例題,然后按要求解答問題:
例題:已知二次三項(xiàng)式 有一個(gè)因式是 ,求另一個(gè)因式以及 的值.
解法一:設(shè)另一個(gè)因式為 ,
得 ,
則 ,
,
解得 ,
另一個(gè)因式為 , 的值為 .
解法二:∵二次三項(xiàng)式 x2-4x+m 有一個(gè)因式是 (x+3),
∴當(dāng)x+3=0,即x=-3時(shí),x2-4x+m=0.
把x=-3代入x2-4x+m=0,
得m=-21,
而x2-4x-21=(x+3)(x-7).
問題:分別仿照以上兩種方法解答下面問題:
(1)已知二次三項(xiàng)式 有一個(gè)因式是 ,求另一個(gè)因式以及 的值.
解法一: 解法二:
(2)直接回答:
已知關(guān)于x的多項(xiàng)式 2x3 (3k)x22x1有一個(gè)因式是 1,則k的值為_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com