【題目】如圖,有一塊長(3a+b)米,寬(2a+b)米的長方形廣場,園林部門要對陰影區(qū)域進行綠化,空白區(qū)域進行廣場硬化,其中,四個角部分是半徑為(a﹣b)米的四個大小相同的扇形,中間部分是邊長為(a+b)米的正方形.
(1)用含a、b的式子表示需要硬化部分的面積;
(2)若a=30,b=10,求出硬化部分的面積(結果保留π的形式).
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知線段AB,點C分線段AB為5∶7,點D分線段AB為5∶11,若AB=96cm,求線段CD的長。
(2)如圖2,已知線段AB上有C、D兩點,AC=BC,AD=BD,CD=14cm,求線段AB的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分線,AD=20,則BC的長是 ( )
A. 20 B. 20 C. 30 D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】火車站、機場、郵局等場所都有為旅客提供打包服務的項目.現(xiàn)有一個長、寬、高分別為a、b 、30的箱子(其中a>b),準備采用如圖①、②的兩種打包方式,所用打包帶的總長(不計接頭處的長)分別記為.
(1)圖①中打包帶的總長=________.
圖②中打包帶的總長=________.
(2)試判斷哪一種打包方式更節(jié)省材料,并說明理由.(提醒:先判斷再說理,說理過程即為比較 的大。
(3)若b=40且a為正整數(shù),在數(shù)軸上表示數(shù)的兩點之間有且只有19個整數(shù)點,求a 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下所示兩幅不完整的統(tǒng)計圖,請結合圖中所給信息,解答下列問題:
(1)本次調研活動共調研了多少名學生,表示“QQ”的扇形圓心角的度數(shù)是多少.
(2)請你補充完整條形統(tǒng)計圖;
(3)如果該校有2000名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是由一些棱長都為1的小正方體組合成的簡單幾何體.
(1)請畫出這個幾何體的三視圖并用陰影表示出來;
(2)該幾何體的表面積(含下底面)為 ;
(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的主視圖和俯視圖不變,那么最多可以再添加 個小正方體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菲爾茲獎是國際上有崇高聲譽的一個數(shù)學獎項,下面的數(shù)據(jù)是從1936年至2014年菲爾茲獎得主獲獎時的年齡(歲): 29 39 35 33 39 27 33 35 31 31 37 32 38 36
31 39 32 38 37 34 29 34 38 32 35 36 33 32
29 35 36 37 39 38 40 38 37 39 38 34 33 40
36 36 37 40 31 38 38 40 40 37 35 40 39 37
請根據(jù)上述數(shù)據(jù),解答下列問題:
小彬按“組距為5”列出了如圖的頻數(shù)分布表
分組 | 頻數(shù) |
A:25~30 | |
B:30~35 | 15 |
C:35~40 | 31 |
D:40~45 | |
合計 | 56 |
(1)每組數(shù)據(jù)含最小值不含最大值,請將表中空缺的部分補充完整,并補全頻數(shù)分布直方圖;
(2)根據(jù)(1)中的頻數(shù)分布直方圖描述這56位菲爾茲獎得主獲獎時的年齡的分布特征;
(3)在(1)的基礎上,小彬又畫了如圖所示的扇形統(tǒng)計圖,圖中獲獎年齡在30~35歲的人數(shù)約占獲獎總人數(shù)的%(百分號前保留1位小數(shù));C組所在扇形對應的圓心角度數(shù)約為°(保留整數(shù))
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com