如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為9cm,則正方形A,B,C,D的面積之和為 cm2.
81 cm2.
【考點(diǎn)】勾股定理.
【分析】根據(jù)勾股定理有S正方形2+S正方形3=S正方形1,S正方形C+S正方形D=S正方形3,S正方形A+S正方形B=S正方形2,等量代換即可求四個(gè)小正方形的面積之和.
【解答】解:如右圖所示,
根據(jù)勾股定理可知,
S正方形2+S正方形3=S正方形1,
S正方形C+S正方形D=S正方形3,
S正方形A+S正方形B=S正方形2,
∴S正方形C+S正方形D+S正方形A+S正方形B=S正方形2+S正方形3=S正方形1=92=81.
故答案是81.
【點(diǎn)評】本題考查了勾股定理的幾何意義,關(guān)鍵是掌握兩直角邊的平方和等于斜邊的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在括號內(nèi)填寫理由.
如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°( ),
∴AB∥CD ( )
∴∠B=∠DCE( )
又∵∠B=∠D( ),
∴∠DCE=∠D ( )
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
Rt△ABC與Rt△FED是兩塊全等的含30°、60°角的三角板,按如圖(一)所示拼在一起,CB與DE重合.
(1)求證:四邊形ABFC為平行四邊形;
(2)取BC中點(diǎn)O,將△ABC繞點(diǎn)O順時(shí)鐘方向旋轉(zhuǎn)到如圖(二)中△A′B′C′位置,直線B'C'與AB、CF分別相交于P、Q兩點(diǎn),猜想OQ、OP長度的大小關(guān)系,并證明你的猜想;
(3)在(2)的條件下,指出當(dāng)旋轉(zhuǎn)角至少為多少度時(shí),四邊形PCQB為菱形?(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
利用基本尺規(guī)作圖,下列條件中,不能作出唯一直角三角形的是( 。
A.已知斜邊和一銳角 B.已知一直角邊和一銳角
C.已知斜邊和一直角邊 D.已知兩個(gè)銳角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平行四邊形ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是( 。
①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
A.①② B.②③④ C.①②④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,∠AOB=30°,點(diǎn)M、N分別在邊OA、OB上,且OM=1,ON=3,點(diǎn)P、Q分別在邊OB、OA上,則MP+PQ+QN的最小值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com