【題目】如圖,在等腰△ABC中,∠A=80°,∠B和∠C的平分線相交于點O
(1)連接OA,求∠OAC的度數(shù);
(2)求:∠BOC。

【答案】
(1)解:連接AO,∵在等腰△ABC中,∠B和∠C的平分線相交于點O,
∴等腰△ABC關于線段AO所在的直線對稱,
∵∠A=80°,
∴∠OAC=40°
(2)解:∵BO、CO分別平分∠ABC和∠ACB,∴∠OBC= ∠ABC,∠OCB=∠ACB,
∴∠BOC=180°-(∠OBC+∠OCB)
=180°-( ∠ABC+∠ACB)
=180°- (∠ABC+∠ACB)
=180°- (180°-∠A)
=90°+∠A。
∴當∠A=80°時,
∠BOC=180° (∠B+∠C)=90°+∠A=130°
【解析】(1)連接AO,根據(jù)等腰三角形的性質(zhì)和已知條件可知等腰△ABC關于線段AO所在的直線對稱,在根據(jù)軸對稱的性質(zhì)可求∠OAC的度數(shù)。
(2)根據(jù)BO、CO分別平分∠ABC和∠ACB可得∠OBC= ∠ABC,∠OCB=∠ACB,于是∠BOC=180°-( ∠ABC+∠ACB)=90°+∠A。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,等邊△ABC的頂點B,C的坐標分別為(2,0),(6,0),點N從A點出發(fā)沿AC向C點運動,連接ON交AB于點M,當點M恰平分線段ON時,求線段CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x1是方程x2+bx0的一個根,則它的兩根之和是( 。

A.1B.1C.0D.±1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線與x軸、y軸相交于B、C兩點,動點D在線段OB上,將線段DC繞著點D順時針旋轉(zhuǎn)90°得到DE,過點E作直線lx軸于H,過點C作CFy軸,交直線l于F,設點D的橫坐標為m.

(1)請直接寫出點B、C的坐標;

(2)當點E落在直線BC上時,求tanFDE的值;

(3)對于常數(shù)m,探究:在直線l上是否存在點G,使得CDO=DFE+DGH?若存在,請求出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線)與y軸交于點C,與x軸交于點A(1,0)和點B.

(1)求拋物線的解析式;

(2)求直線BC的解析式;

(3)若點N是拋物線上的動點,過點N作NH⊥x軸,垂足為H,以B,N,H為頂點的三角形是否能夠與△OBC相似?若能,請求出所有符合條件的點N的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知|a2|與(b3)2互為相反數(shù),則abba的值為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是(
A.CB=CD
B.∠BAC=∠DAC
C.∠BCA=∠DCA
D.∠B=∠D=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一個條件,某學習小組在討論這個條件時給出了如下幾種方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有(

A.1種
B.2種
C.3種
D.4種

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且相交于O點. ①試說明△OBC是等腰三角形;
②連接OA,試判斷直線OA與線段BC的關系,并說明理由.

查看答案和解析>>

同步練習冊答案