【題目】某區(qū)響應(yīng)國家提出的垃圾分類的號召,將生活垃圾分為廚余垃圾、可回收物、有害垃圾和其他垃圾四類,并分別設(shè)置了相應(yīng)的垃圾箱.為了解居民生活垃圾分類的情況,隨機(jī)對該區(qū)四類垃圾箱中總計(jì)1000噸生活垃圾進(jìn)行分揀后,統(tǒng)計(jì)數(shù)據(jù)如表:
垃圾箱種類 垃圾量 垃圾種類(噸) | “廚余垃圾”箱 | “可回收物”箱 | “有害垃圾”箱 | “其他垃圾”箱 |
廚余垃圾 | 400 | 100 | 40 | 60 |
可回收物 | 30 | 140 | 10 | 20 |
有害垃圾 | 5 | 20 | 60 | 15 |
其他垃圾 | 25 | 15 | 20 | 40 |
下列三種說法:
(1)廚余垃圾投放錯誤的有400t;
(2)估計(jì)可回收物投放正確的概率約為;
(3)數(shù)據(jù)顯示四類垃圾箱中都存在各類垃圾混放的現(xiàn)象,因此應(yīng)該繼續(xù)對居民進(jìn)行生活垃圾分類的科普.其中正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是直徑AB上的一點(diǎn),AB=6,CP⊥AB交半圓于點(diǎn)C,以BC為直角邊構(gòu)造等腰Rt△BCD,∠BCD=90°,連接OD.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對線段AP,BC,OD的長度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整:
(1)對于點(diǎn)P在AB上的不同位置,畫圖、測量,得到了線段AP,BC,OD的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的長度這三個(gè)量中,確定________的長度是自變量,________的長度和________的長度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)OD=2BC時(shí),線段AP的長度約為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的弦,AC=6,點(diǎn)B是⊙O上的一個(gè)動點(diǎn),且∠ABC=60°,若點(diǎn)M、N分別是AC、BC的中點(diǎn),則MN的最大值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在弧MN和弦MN所組成的圖形中,P是弦MN上一動點(diǎn),過點(diǎn)P作弦MN的垂線,交弧MN于點(diǎn)Q,連接MQ.已知MN=6cm,設(shè)M、P兩點(diǎn)間的距離為xcm,P、Q兩點(diǎn)間的距離為y1cm,M、Q兩點(diǎn)間的距離為y2cm.小軒根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小軒的探究過程,請補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y1,y2與x的幾組對應(yīng)值:x/cm.
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 | 3.00 | 2.83 | 2.24 | 0 |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | m | 5.48 | 6 |
上表中m的值為 .(保留兩位小數(shù))
(2)在同一平面直角坐標(biāo)系xOy(圖2)中,函數(shù)y1的圖象如圖,請你描出補(bǔ)全后的表中y2各組數(shù)值所對應(yīng)的點(diǎn)(x,y2),并畫出函數(shù)y2的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)△MPQ有一個(gè)角是30°時(shí),MP的長度約為 cm.(保留兩位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是以點(diǎn)O為圓心,AB為直徑的半圓上的動點(diǎn)(不與點(diǎn)A,B重合),AB=6cm,過點(diǎn)C作CD⊥AB于點(diǎn)D,E是CD的中點(diǎn),連接AE并延長交于點(diǎn)F,連接FD.小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對線段AC,CD,FD的長度之間的關(guān)系進(jìn)行了探究.
下面是小騰的探究過程,請補(bǔ)充完整:
(1)對于點(diǎn)C在上的不同位置,畫圖、測量,得到了線段AC,CD,FD的長度的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | |
AC/cm | 0.1 | 0.5 | 1.0 | 1.9 | 2.6 | 3.2 | 4.2 | 4.9 |
CD/cm | 0.1 | 0.5 | 1.0 | 1.8 | 2.2 | 2.5 | 2.3 | 1.0 |
FD/cm | 0.2 | 1.0 | 1.8 | 2.8 | 3.0 | 2.7 | 1.8 | 0.5 |
在AC,CD,FD的長度這三個(gè)量中,確定 的長度是自變量, 的長度和 的長度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解答問題:當(dāng)CD>DF時(shí),AC的長度的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地扶貧人員甲從辦公室出發(fā),騎車勻速前往所村走訪群眾,出發(fā)幾分鐘后,扶貧人員乙發(fā)現(xiàn)甲的手機(jī)落在辦公室,無法聯(lián)系,于是騎車沿相同的路線勻速去追甲.乙剛出發(fā)2分鐘,甲也發(fā)現(xiàn)自己手機(jī)落在辦公室,立刻原路原速騎車返回辦公室,2分鐘后甲遇到乙,乙把手機(jī)給甲后立即原路原速返回辦公室,甲繼續(xù)原路原速趕往村.甲、乙兩人相距的路程(米)與甲出發(fā)的時(shí)間(分)之間的關(guān)系如圖所示(乙給甲手機(jī)的時(shí)間忽略不計(jì)).有下列三個(gè)說法:
①甲出發(fā)10分鐘后與乙相遇;
②甲的速度是400米/分;
③乙返回辦公室用時(shí)4分鐘.
其中所有正確說法的序號是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂場新推出了一個(gè)“極速飛車”的項(xiàng)目.項(xiàng)目有兩條斜坡軌道以滿足不同的難度需求,游客可以乘坐垂直升降電梯AB自由上下選擇項(xiàng)目難度.其中斜坡軌道BC的坡度(或坡比)為i=1:2,BC=12米,CD=8米,∠D=36°,(其中點(diǎn)A、B、C、D均在同一平面內(nèi))則垂直升降電梯AB的高度約為( 。┟祝ň_到0.1米,參考數(shù)據(jù):tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)
A.5.6B.6.9C.11.4D.13.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛快遞車從長春出發(fā),走高速公路,途經(jīng)伊通,前往靖宇鎮(zhèn)送快遞,到達(dá)后卸貨和休息共用1h,然后開車按原速原路返回長春.這輛快遞車在長春到伊通、伊通到靖宇的路段上分別保持勻速前進(jìn),這輛快遞車距離長春的路程y(km)與它行駛的時(shí)間x(h)之間的函數(shù)圖象如圖所示.
(1)快遞車從伊通到長春的速度是______km/h,往返長春和靖宇兩地一共用時(shí)______h.
(2)當(dāng)這輛快遞車在靖宇到伊通的路段上行駛時(shí),求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(3)如果這輛快遞車兩次經(jīng)過同一個(gè)服務(wù)區(qū)的時(shí)間間隔為4h,直接寫出這個(gè)服務(wù)區(qū)距離伊通的路程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com