【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半徑.
【答案】(1)見(jiàn)解析;(2)
【解析】分析: (1)首先連接CO,根據(jù)CD與⊙O相切于點(diǎn)C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.
(2)首先設(shè)CD為x,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.
詳解:
(1)證明:如圖,連接CO,
,
∵CD與⊙O相切于點(diǎn)C,
∴∠OCD=90°,
∵AB是圓O的直徑,
∴∠ACB=90°,
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:設(shè)CD為x,
則AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半徑是.
點(diǎn)睛: 此題主要考查了切線的性質(zhì)和應(yīng)用,以及勾股定理的應(yīng)用,要熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=﹣2x經(jīng)過(guò)點(diǎn)P(﹣2,a),點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)P′在反比例函數(shù)y=(k≠0)的圖象上.
(1)求反比例函數(shù)的解析式;
(2)直接寫(xiě)出當(dāng)y<4時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個(gè)條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個(gè)作為補(bǔ)充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是( )
A.①②B.②③C.①③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】任意拋擲一枚骰子兩次,骰子停止轉(zhuǎn)動(dòng)后,計(jì)算朝上的點(diǎn)數(shù)的和.
(1)和最小的是多少,和最大的是多少?
(2)下列事件:①點(diǎn)數(shù)的和為7;②點(diǎn)數(shù)的和為1;③點(diǎn)數(shù)的和為15.哪些是不可能性事件?哪些是不確定事件?
(3)點(diǎn)數(shù)的和為7與點(diǎn)數(shù)的和為2的可能性誰(shuí)大?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對(duì)稱(chēng)軸x=1.如圖所示,有下列5個(gè)結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).其中所有結(jié)論正確的是______(填寫(xiě)番號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里裝有顏色不同的黑、白兩種球共60個(gè),它們除顏色不同外,其余都相同,王穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中攪勻,經(jīng)過(guò)大量重復(fù)上述摸球的過(guò)程,發(fā)現(xiàn)摸到白球的頻率定于0.25.
(1)請(qǐng)估計(jì)摸到白球的概率將會(huì)接近________;
(2)計(jì)算盒子里白、黑兩種顏色的球各有多少個(gè)?
(3)如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過(guò)點(diǎn)A,EF與AC交于M點(diǎn).
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運(yùn)動(dòng)過(guò)程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;
(3)當(dāng)線段BE為何值時(shí),線段AM最短,最短是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C是⊙O優(yōu)弧ACB上的中點(diǎn),弦AB=6cm,E為OC上任意一點(diǎn),動(dòng)點(diǎn)F從點(diǎn)A出發(fā),以每秒1cm的速度沿AB方向響點(diǎn)B勻速運(yùn)動(dòng),若y=AE-EF,則y與動(dòng)點(diǎn)F的運(yùn)動(dòng)時(shí)間x(0≤x≤6 )秒的函數(shù)關(guān)系式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段a=0.3m,b=60cm,c=12dm.
(1)求線段a與線段b的比.
(2)如果線段a、b、c、d成比例,求線段d的長(zhǎng).
(3)b是a和c的比例中項(xiàng)嗎?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com