拋物線經(jīng)過(guò)A(-3,-5),B(1,-5),則此拋物線的對(duì)稱(chēng)軸是( )
A.x=1
B.x=-1
C.x=2
D.x=-2
【答案】分析:由A、B兩點(diǎn)縱坐標(biāo)相等可知,兩點(diǎn)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),則對(duì)稱(chēng)軸x=即可求出.
解答:解:由于拋物線經(jīng)過(guò)A(-3,-5),B(1,-5),且兩點(diǎn)縱坐標(biāo)相等,
則兩點(diǎn)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng),因此x==-1即為此拋物線的對(duì)稱(chēng)軸.
故選B.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象上縱坐標(biāo)相等的兩點(diǎn)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一條拋物線的圖象同時(shí)滿足下列條件:①開(kāi)口向下,②對(duì)稱(chēng)軸是直線x=2,③拋物線經(jīng)過(guò)原點(diǎn),則這條拋物
線的解析式是
(寫(xiě)一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江北區(qū)模擬)在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),直角梯形AOCD的頂點(diǎn)A的坐標(biāo)為(0,
3
),點(diǎn)D的坐標(biāo)為(1,
3
),點(diǎn)C在x軸的正半軸上,過(guò)點(diǎn)O且以點(diǎn)D為頂點(diǎn)的拋物線經(jīng)過(guò)點(diǎn)C,點(diǎn)P為CD的中點(diǎn).
(1)求拋物線的解析式及點(diǎn)P的坐標(biāo);
(2)在y軸右側(cè)的拋物線上是否存在點(diǎn)Q,使以Q為圓心的圓同時(shí)與y軸、直線OP相切?若存在,請(qǐng)求出滿足條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)M為線段OP上一動(dòng)點(diǎn)(不與O點(diǎn)重合),過(guò)點(diǎn)O、M、D的圓與y軸的正半軸交于點(diǎn)N.求證:OM+ON為定值.
(4)在y軸上找一點(diǎn)H,使∠PHD最大.試求出點(diǎn)H的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•嘉定區(qū)一模)己知拋物線y=x2-2x+c的對(duì)稱(chēng)軸是直線x=1,且該拋物線經(jīng)過(guò)點(diǎn)A(-1,y1)和B(2,y2),比較y1與y2的大。簓1
y2(填寫(xiě)“>”或“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線經(jīng)過(guò)點(diǎn)(0,3)、(1,-1)、(-1,9),求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)O及A(-2
3
,0),其頂點(diǎn)為B(m,3),C是AB中點(diǎn),點(diǎn)E是直線OC上的一個(gè)動(dòng)點(diǎn) (點(diǎn)E與點(diǎn)O不重合),點(diǎn)D在y軸上,且EO=ED.
(1)求此拋物線及直線OC的解析式;
(2)當(dāng)點(diǎn)E運(yùn)動(dòng)到拋物線上時(shí),求BD的長(zhǎng);
(3)連接AD,當(dāng)點(diǎn)E運(yùn)動(dòng)到何處時(shí),△AED的面積為
3
3
4
?請(qǐng)直接寫(xiě)出此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案