26、已知△ABC≌△A′B′C′,AD平分∠BAC,則∠B′A′C′是∠BAD的
2
倍.
分析:由△ABC≌△A'B'C',可得∠BAC=∠B′A′C′,據(jù)AD平分∠BAC即可得∠BAC=2∠BAD,即可得解.
解答:解:∵△ABC≌△A'B'C',
∴∠BAC=∠B′A′C′,
∵AD平分∠BAC,
∴∠BAC=2∠BAD,
即∠B′A′C′=2∠BAD.
故答案為:2.
點(diǎn)評:本題考查了全等三角形的性質(zhì),涉及到角平分線的性質(zhì),準(zhǔn)確找到兩全等三角形的對應(yīng)角是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

1、已知△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,若a、b是關(guān)于x的一元二次方程x2-(c+4)x+4c+8=0的兩個根,判斷△ABC的形狀
直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知ABC的三邊滿足a2+b2+c2-ab-bc-ac=0,則這個三角形的形狀是( 。
A、直角三角形B、等腰三角形C、等腰直角三角形D、等邊三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知ABC中,AD為BC邊上的中線,且AB=4cm,AC=3cm,則AD的取值范圍是( 。
A、3<AD<4
B、1<AD<7
C、
1
2
<AD<
7
2
D、
1
3
<AD<
7
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,cosA=
1
2
,tgB=1,則△ABC的形狀是(  )
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC,∠B的平分線交邊AC于P,∠A的平分線交邊BC于Q,如果過點(diǎn)P、Q、C的圓也過△ABC的內(nèi)心R,且PQ=1,則PR的長等于
 

查看答案和解析>>

同步練習(xí)冊答案