【題目】填寫下表
序號 |
| 1 | 2 | … |
① |
| 5 |
| … |
② |
| 2 |
| … |
③ |
|
| 4 | … |
隨著值的逐漸變大,回答下列問題
(1)當(dāng)時,這三個代數(shù)式中 的值最。
(2)你預(yù)計代數(shù)式的值最先超過1000的是代數(shù)式 ,此時的值為 .
【答案】表格見解析;(1);(2),10
【解析】
將n=1和2分別代入三個代數(shù)式計算即可填表;
(1)當(dāng)n=5時,分別代入各個代數(shù)式計算即可得到答案;
(2)預(yù)計得到最先超過1000的,求出n的值即可.
解:填表:當(dāng)n=2時,,;當(dāng)n=1時,,
故表格如下:
(1)當(dāng)n=5時,4n+1=4×5+1=21,n2+1=25+1=26,2n=25=32,
∵32>26>21,
∴當(dāng)n=5時,4n+1的值最小.
故答案為:;
(2)預(yù)計代數(shù)式的值最先超過1000的是2n;此時n的值為10.
故答案為:,10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級共有800名學(xué)生,準(zhǔn)備調(diào)查他們對“低碳”知識的了解程度.
(1)在確定調(diào)查方式時,團(tuán)委設(shè)計了以下三種方案:
方案一:調(diào)查七年級部分女生;
方案二:調(diào)查七年級部分男生;
方案三:到七年級每個班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請問其中最具有代表性的一個方案是 ;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補(bǔ)充完整;
(3)在扇形統(tǒng)計圖中,“比較了解”所在扇形的圓心角的度數(shù)是 .
(4)請你估計該校七年級約有 名學(xué)生比較了解“低碳”知識.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為打造書香校園,計劃購進(jìn)甲、乙兩種規(guī)格的書柜放置新購進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個、乙種書柜2個,共需資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.
(1)甲、乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進(jìn)這兩種規(guī)格的書柜共20個,其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請設(shè)計幾種購買方案供這個學(xué)校選擇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC與△ADE,AB=AC,AD=AE,且∠BAC=∠DAE=40°,CD與BE相交于點F,連接AF則下列結(jié)論:①CD=BE:②△ABF≌△ACF;③∠BFD=140°;④FA平分∠BFD;⑤∠FAC=∠FAE.其中正確的結(jié)論有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,B、C分別是∠PAQ的兩邊AP,AQ上的點,直線l垂直平分BC。
(1)尺規(guī)作圖:在直線1上求作一點O,使得點O到AP、AQ距離相等(不寫作法,保留作圖痕跡);
(2)過O點作OE⊥AP,OF⊥AQ,垂足分別為E、F。求證BE=CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形是長方形,面積為
(1)如圖1,是邊上一點,連接、,則三角形的面積為 (用含的代數(shù)式表示).
(2)是長方形內(nèi)一點,連接、、、,三角形的面積為.
①如圖2,則三角形的面積為 ;(用含、的代數(shù)式表示)
②如圖3,連接,若三角形的面積為,則三角形的面積為 .(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB于點D,點E在CD上,下列四個條件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,將其中兩個作為條件,不能判定△ADC≌△EDB的是
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖各圖是棱長為1cm的小正方體擺成的,如圖①中,從正面看有1個正方形,表面積為6cm2;如圖②中,從正面看有3個正方形,表面積為18cm2;如圖③,從正面看有6個正方形,表面積為36cm2;…
(1)第6個圖中,從正面看有多少個正方形?表面積是多少?
(2)第n個圖形中,從正面看有多少個正方形?表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中線CM將△CMA折疊,使點A落在點D處,若CD恰好與MB垂直,且BC=4,則△ABC 的面積為_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com