【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點(diǎn),過點(diǎn)P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.
【答案】(1)(2)證明見解析
【解析】試題分析:(1)根據(jù)角平分線的性質(zhì)和全等三角形的判定方法證明△ABD≌△CBD,由全等三角形的性質(zhì)即可得到:∠ADB=∠CDB;
(2)若∠ADC=90°,由(1)中的條件可得四邊形MPND是矩形,再根據(jù)兩邊相等的四邊形是正方形即可證明四邊形MPND是正方形.
證明:(1)∵對角線BD平分∠ABC,
∴∠ABD=∠CBD,
在△ABD和△CBD中,
,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB;
(2)∵PM⊥AD,PN⊥CD,
∴∠PMD=∠PND=90°,
∵∠ADC=90°,
∴四邊形MPND是矩形,
∵∠ADB=∠CDB,
∴∠ADB=45°
∴PM=MD,
∴四邊形MPND是正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】氣象臺(tái)預(yù)報(bào)“本市明天降水概率是30%”,對此消息下列說法正確的是( )
A.本市明天將有30%的地區(qū)降水
B.本市明天將有30%的時(shí)間降水
C.本市明天有可能降水
D.本市明天肯定不降水
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣mx2+4x+2m與x軸交于點(diǎn)A(α,0),B(β,0),且=﹣2,
(1)求拋物線的解析式.
(2)拋物線的對稱軸為l,與y軸的交點(diǎn)為C,頂點(diǎn)為D,點(diǎn)C關(guān)于l的對稱點(diǎn)為E,是否存在x軸上的點(diǎn)M,y軸上的點(diǎn)N,使四邊形DNME的周長最?若存在,請畫出圖形(保留作圖痕跡),并求出周長的最小值;若不存在,請說明理由.
(3)若點(diǎn)P在拋物線上,點(diǎn)Q在x軸上,當(dāng)以點(diǎn)D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,BC=8,AB=6,經(jīng)過點(diǎn)B和點(diǎn)D的兩個(gè)動(dòng)圓均與AC相切,且與AB、BC、AD、DC分別交于點(diǎn)G、H、E、F,則EF+GH的最小值是( )
A.6 B.8 C.9.6 D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OE⊥CD.
(1)若∠BOD=28°,求∠AOE的度數(shù).
(2)若OF平分∠AOC,小明經(jīng)探究發(fā)現(xiàn):當(dāng)∠BOD為銳角時(shí),∠EOF的度數(shù)始終都是∠BOC度數(shù)的一半,請你判斷他的發(fā)現(xiàn)是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖反映的是小剛從家里跑步去體育館,在那里鍛煉了一陣后又走到文具店去買筆,然后走回家,其中x表示時(shí)間,y表示小剛離家的距離.根據(jù)圖象回答下列問題:
(1)體育場離小剛家 千米,小剛在體育場鍛煉了 分鐘.
(2)體育場離文具店 千米,小剛在文具店停留了 分鐘.
(3)小剛從家跑步到體育場、從體育場走到文具店、從文具店散步回家的速度分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過A(0,1)、B(4,3)兩點(diǎn).
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)過點(diǎn)B作BC⊥x軸,垂足為C,點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),直線MN平行于y軸交直線AB于N,如果M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,請直接寫出M點(diǎn)的橫坐標(biāo);
(4)已知點(diǎn)E為拋物線上位于第二象限內(nèi)任一點(diǎn),且E點(diǎn)橫坐標(biāo)為m,作邊長為10的正方形EFGH,使EF∥x軸,點(diǎn)G在點(diǎn)E的右上方,那么,對于大于或等于﹣1的任意實(shí)數(shù)m,F(xiàn)G邊與過A、B兩點(diǎn)的直線都有交點(diǎn),請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,BD⊥AC于點(diǎn)D,E為BC上一點(diǎn),過E點(diǎn)作EF⊥AC,垂足為F,過點(diǎn)D作DH∥BC交AB于點(diǎn)H.
(1)請你補(bǔ)全圖形。
(2)求證:∠BDH=∠CEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com