21、如圖,?ABCD中,E為BC中點(diǎn),連接AE并延長交DC的延長線于F點(diǎn),連接BF.
(1)求證:AB=CF;
(2)試猜想當(dāng)AB與AC滿足什么數(shù)量關(guān)系時,四邊形ABFC是菱形?并說明理由.
分析:(1)根據(jù)平行四邊形的性質(zhì)可得到AB∥CD,從而可得到AB∥DF,根據(jù)平行線的性質(zhì)可得到兩組角相等,已知點(diǎn)E是BC的中點(diǎn),從而可根據(jù)AAS來判定△BAE≌△CFE,根據(jù)全等三角形的對應(yīng)邊相等可證得AB=CF.
(2)由第(1)知AB=CF,已知AB∥DF,從而根據(jù)有一組邊平行且相等的四邊形是平行四邊形可判定四邊形ABFC是平行四邊形,再根據(jù)有一給鄰邊相等的平行四邊形是菱形,從而不難推出AB與AC的數(shù)量關(guān)系.
解答:證明:(1)∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∵點(diǎn)F為DC的延長線上的一點(diǎn),
∴AB∥DF,
∴∠BAE=∠CFE,∠ECF=∠EBA,
∵E為BC中點(diǎn),
∴BE=CE,
∴△BAE≌△CFE,
∴AB=CF;

解:(2)∵AB=CF,AB∥DF,
∴四邊形ABFC是平行四邊形,
∴當(dāng)AB=AC時,四邊形ABFC是菱形.
點(diǎn)評:此題主要考查學(xué)生對平行四邊形的性質(zhì),菱形的判定與性質(zhì)的綜合運(yùn)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點(diǎn),則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC,BD相交于O點(diǎn),將直線AC繞點(diǎn)O順時針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F(xiàn),下列說法不正確的是(  )
A、當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過程中,線段AF與EC總相等
C、當(dāng)旋轉(zhuǎn)角為45°時,四邊形BEDF一定為菱形
D、當(dāng)旋轉(zhuǎn)角為45°時,四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長線上一點(diǎn),BE與AD交于點(diǎn)F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點(diǎn)E是AD的中點(diǎn),延長CE交BA的延長線于點(diǎn)F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•浙江)如圖,?ABCD中,對角線AC和BD交于點(diǎn)O,過O作OE∥BC交DC于點(diǎn)E,若OE=5cm,則AD的長為
10
10
cm.

查看答案和解析>>

同步練習(xí)冊答案