【題目】在某次防災抗災過程中,為了保障某市的抗災物資供應,現有一批救災物資由,兩種型號的貨車運輸至該市.已知輛型貨車和輛型貨車共可滿載救災物資噸,輛型貨車和輛型貨車共可滿載救災物資噸.
(1)求輛型貨車和輛型貨車分別能滿載多少噸;
(2)已知這批救災物資共噸,計劃同時調用,兩種型號的貨車共輛,并要求一次性將全部物資運送到該市,試求調用,兩種型號的貨車的方案.
科目:初中數學 來源: 題型:
【題目】某水果商將一種高檔水果放在商場銷售,該種水果成本價為10元,售價為40元,每天可銷售20.調查發(fā)現,銷售單價每下降1元,每天的銷售量將增加5.
(1)直接寫出每天的銷售量ykg與降價(元)之間的函數關系式;
(2)降價多少元時,每天的銷售額元最大,最大是多少元?(銷售額=售價×數量)
(3)每銷售1水果,需向商場繳納柜臺費元(),水果商計劃租賃柜臺20天,為了促銷,決定開展“每天降價1元”活動,即從第1天開始,每天的銷售單價比前一天下降1元(第1天的銷售單價為39元),經測算發(fā)現,銷售的前11天,每天的利潤元隨銷售天數(為正整數)的增大而增大,試確定的取值范圍.(利潤=銷售額-成本-柜臺費)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知函數將此函數的圖象記為.
(1)當時,
直接寫出此函數的函數表達式.
點在圖象上,求點的坐標.
點在圖象上,求的值.
(2)設圖象最低點的縱坐標為.當時,直接寫出的值.
(3)矩形的頂點坐標分別為若函數在范圍內的圖象與矩形的邊有且只有一個公共點,直接寫出此時的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=2,∠ABC=30°,AD為BC邊上的高,E、F分別為AB、AC邊上的點,將△ABC分別沿DE、DF折疊,使點B落在DA的延長線上點M處,點C落在點N處,連接MN,若MN∥AC,則AF的長是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一個二次函數的圖象經過點A(0,1),它的頂點為B(1,3).
(1)求這個二次函數的表達式;
(2)過點A作AC⊥AB交拋物線于點C,點P是直線AC上方拋物線上的一點,當△APC面積最大時,求點P的坐標和△APC的面積最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線交軸于點,,交軸于點,且拋物線的對稱軸經過點,過點的直線交拋物線于另一點,點是該拋物線上一點,連接,,,.
(1)求直線及拋物線的函數表達式;
(2)試問:軸上是否存在某一點,使得以點,,為頂點的與相似?若相似,請求出此時點的坐標;若不存在,請說明理由;
(3)若點是直線上方的拋物線上一動點(不與點,重合),過作交直線于點,以為直徑作,則在直線上所截得的線段長度的最大值等于_______.(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖
(1)方法體驗:
如圖1,點P在矩形ABCD的對角線AC上,且不與點A,C重合,過點P分別作邊AB,AD的平行線,交兩組對邊于點E,F和G,H,容易證明四邊形PEDH和四邊形PFBG是面積相等的矩形,分別連結EG,FH.
①根據矩形PEDH和矩形PFBG面積相等的關系,那么PE·PH= .
②求證:EG∥FH.
(2)方法遷移:
如圖2,已知直線 分別與x軸,y軸交于D,C兩點,與雙曲線 交于A,B兩點. 求證:AC=BD.
(3)知識應用:
如圖3,反比例函數 (x>0)的圖象與矩形ABCO的邊BC交于點D,與邊AB交于點E, 直線DE與x軸,y軸分別交于點F,G .若矩形ABCO的面積為10,△ODG與△ODF的面積比為3:5,則k=________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com