【題目】因式分解:x2﹣2x+(x﹣2)= .
【答案】(x+1)(x﹣2)
【解析】解:原式=x(x﹣2)+(x﹣2)=(x+1)(x﹣2).
故答案是:(x+1)(x﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線(xiàn),與x軸、y軸分別交于點(diǎn)A、C,以AC為對(duì)角線(xiàn)作矩形OABC,點(diǎn)P、Q分別為射線(xiàn)OC、射線(xiàn)AC上的動(dòng)點(diǎn),且有AQ=2CP, 連結(jié)PQ,設(shè)點(diǎn)P的坐標(biāo)為P(0,t).
(1)求點(diǎn)B的坐標(biāo).
(2)若t=1時(shí),連接BQ,求△ABQ的面積.
(3)如圖2,以PQ為直徑作⊙I,記⊙I與射線(xiàn)AC的另一個(gè)交點(diǎn)為E.
① 若,求此時(shí)t的值.
② 若圓心I在△ABC內(nèi)部(不包含邊上),則此時(shí)t的取值范圍為 .(直接寫(xiě)出答案)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3,以頂點(diǎn)A為原點(diǎn),且有一組鄰邊與坐標(biāo)軸重合,求出正方形ABCD各個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】收集數(shù)據(jù)常用的方法有 、 、查閱資料等.調(diào)查又分為 調(diào)查、 調(diào)查和抽樣調(diào)查等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形ABCD中,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,E是CD的中點(diǎn),連接OE,過(guò)點(diǎn)C作CF∥BD交線(xiàn)段OE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接DF.求證:
(1)OD=CF;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=x2+bx+c與y軸交于點(diǎn)C(0,-4),與x軸交于A、B,且點(diǎn)B的坐標(biāo)為(2,0).
(1)求該拋物線(xiàn)的解析式;
(2) 若點(diǎn)P是AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3) 若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線(xiàn)段AC上一點(diǎn),且△OMD是等腰三角形,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下面的點(diǎn)陣圖形和與之對(duì)應(yīng)的等式,探究其中的規(guī)律:
(1) 請(qǐng)你在④和⑤后面的橫線(xiàn)上分別寫(xiě)出對(duì)應(yīng)的等式:
(2)通過(guò)猜想,寫(xiě)出與第n個(gè)點(diǎn)陣圖形相對(duì)應(yīng)的等式.
(3)求:點(diǎn)的個(gè)數(shù)等于96的點(diǎn)陣圖形是第幾個(gè).
(4)判斷:是否存在點(diǎn)的個(gè)數(shù)等于2018的點(diǎn)陣圖形,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com