在平面直角坐標系xOy中,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),點B的坐標為,與y軸交于點,頂點為D。
(1)求拋物線的解析式及頂點D坐標;
(2)聯(lián)結(jié)AC、BC,求∠ACB的正切值;
(1)y=(x-2)2-1,D(2,-1);(2).
解析試題分析:(1)把點B與點C的坐標代入拋物線解析式,利用待定系數(shù)法求解,把解析式整理成頂點式即可寫出頂點坐標;
(2)首先得出A點坐標,進而得出∠OBC=45°,BC=3,再過點A作AH⊥BC,垂足為H,利用tAn∠ACB=求出即可.
試題解析: (1)∵拋物線過點B(3,0),點C(0,3),
∴,解得,
∴拋物線解析式為:y=x2-4x+3,
又∵y=x2-4x+3=(x-2)2-1,
∴頂點D的坐標是:D(2,-1);
(2)∵拋物線y=x2-4x+3與x軸交于點A、B兩點(點A在B點的左側(cè)),
∴A(1,0),
又∵O(0,0),C(0,3),B(3,0),
∴BO=CO=3,
∵∠COB=90°,
∴∠OBC=45°,BC=3,
過點A作AH⊥BC,垂足為H,
∴∠AHB=90°,
∵AB=2,∴AH=BH=,
∴CH=BC-BH=2,
∴tAn∠ACB=.
考點: 二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系xOy中,拋物線的解析式是y=x2+1,點C的坐標為(-4,0),平行四邊形OABC的頂點A,B在拋物線上,AB與y軸交于點M,已知點Q(x,y)在拋物線上,點P(t,0)在x軸上.
(1)寫出點M的坐標;
(2)當四邊形CMQP是以MQ,PC為腰的梯形時;
①求t關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
②當梯形CMQP的兩底的長度之比為1∶2時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場購進一批單價為50元的商品,規(guī)定銷售時單價不低于進價,每件的利潤不超過40%.其中銷售量y(件)與所售單價x(元)的關(guān)系可以近似的看作如圖所表示的一次函數(shù).
(1)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)設(shè)該公司獲得的總利潤(總利潤=總銷售額-總成本)為w元,求w與x之間的函數(shù)關(guān)系式.當銷售單價為何值時,所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側(cè),B點的坐標為(3,0),與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.
(1)求這個二次函數(shù)的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形ABPC的面積最大?求出此時P點的坐標和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線與x軸交于A、B兩點,點C是拋物線在第一象限內(nèi)部分的一個動點,點D是OC的中點,連接BD并延長,交AC于點E.
(1)說明:;
(2)當點C、點A到y(tǒng)軸距離相等時,求點E坐標.
(3)當的面積為時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某賓館有30個房間供游客住宿,當每個房間的房價為每天160元時,房間會全部住滿。當每個房間每天的房價每增加10元時,就會有一個房間空閑。賓館需對游客居住的每個房間每天支出20元的各種費用。根據(jù)規(guī)定,每個房間每天的房價不得高于260元。
設(shè)每個房間的房價每天增加x元(x為10的整數(shù)倍)。
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點D.
(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點,AB=10,tan∠CAD=.
① 求拋物線的解析式;
② 判斷拋物線的頂點E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標系中,拋物線經(jīng)過A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圓,M為圓心。
⑴求拋物線的解析式;
⑵求陰影部分的面積;
⑶在正半軸上有一點P,作PQ⊥x軸交BC于Q,設(shè)PQ=K,△CPQ的面積為S,求S關(guān)于K的函數(shù)關(guān)系式,并求出S的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com