一個直棱柱有12個頂點,則它有
8
8
個面.
分析:一個直棱柱有12個頂點,說明它的上下底面是兩個六邊形,從而可以確定它的面的個數(shù).
解答:解:直棱柱有12個頂點,一定是六棱柱,所以它的面的個數(shù)是6+2=8個.
故答案為:8.
點評:考查了認識立體圖形,n棱柱有2n個頂點,有(n+2)個面,有3n條棱.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

一個多面體的面數(shù)(a)和這個多面體表面展開后得到的平面圖形的頂點數(shù)(b),棱數(shù)(c)之間存在一定規(guī)律,如圖1是正三棱柱的表面展開圖,它原有5個面,展開后有10個頂點(重合的頂點只算一個),14條棱.

【探索發(fā)現(xiàn)】
(1)請在圖2中用實線畫出立方體的一種表面展開圖;
(2)請根據(jù)圖2你所畫的圖和圖3的四棱錐表面展開圖填寫下表:
多面體 面數(shù)a 展開圖的頂點數(shù)b 展開圖的棱數(shù)c
直三棱柱 5 10 14
四棱錐
5
5
8 12
立方體
6
6
14
14
19
19
(3)發(fā)現(xiàn):多面體的面數(shù)(a)、表面展開圖的頂點數(shù)(b)、棱數(shù)(c)之間存在的關系式是
a+b-c=1
a+b-c=1
;
【解決問題】
(4)已知一個多面體表面展開圖有17條棱,且展開圖的頂點數(shù)比原多面體的面數(shù)多2,則這個多面體的面數(shù)是多少?

查看答案和解析>>

同步練習冊答案