如圖,一木桿在離地某處斷裂,木桿頂部落在離木桿底部8米處,已知木桿原長16米,求木桿斷裂處離地面多少米?
考點:勾股定理的應用
專題:
分析:設木桿斷裂處離地面x米,由題意得x2+82=(16-x)2,求出x的值即可.
解答:解:設木桿斷裂處離地面x米,由題意得
x2+82=(16-x)2,
解得x=6米.
答:木桿斷裂處離地面6米.
點評:本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某同學本學期共參加了10次數(shù)學測試,其中90分以上有8次,該同學在這10次考試中,出現(xiàn)90分以上的頻率是(  )
A、0.20B、0.80
C、0.90D、8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)(-
1
2
a2b)
3
•(-3ab22
(2)(12x2y-8xy2)÷4xy
(3)-10
1
6
×9
5
6

(4)1-
x-y
x+2y
÷
x2-y2
x2+4xy+4y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

學完“判定兩個直角三角形全等”后老師給學生布置了這樣一道題:
判斷:有兩邊和其中一邊上的高對應相等的兩個三角形全等.
這個命題是真命題還是假命題,若是真命題,請給出證明;若是假命題,請舉出反例.
小彬經過思考得出結論:真命題,并給出了證明如下:
如圖,△ABC與△A′B′C′,BC=B′C′,AD⊥BC,A′D′⊥B′C′,且AD=A′D′.
求證:△ABC≌△A′B′C′
證明:∵AD⊥BC,A′D′⊥B′C′
∴∠ADB=∠A′D′B′=90°
又AB=A′B′,AD=A′D′
∴Rt△ADB≌Rt△A′D′B′(HL)
∴∠B=∠B′
在△ABC與△A′B′C′中
AB=A′B′
∠B=∠B′
BC=B′C′
∴△ABC≌△A′B′C′(SAS)
你認為小彬的結論正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:線段AB=20cm.
 (1)如圖1,點P沿線段AB自A點向B點以2厘米/秒運動,點P出發(fā)2秒后,點Q沿線段BA自B點向A點以3厘米/秒運動,問再經過幾秒后P、Q相距5cm?
 (2)如圖2:AO=4cm,PO=2cm,∠POB=60°,點P繞著點O以60度/秒的速度逆時針旋轉一周停止,同時點Q沿直線BA自B點向A點運動,假若點P、Q兩點能相遇,求點Q運動的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

反比例函數(shù)圖象經過點A(2,3),那么點B(-
2
,3
2
),C(2
3
,-
3
),D(9,
2
3
)是否在該函數(shù)的圖象上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=3,BC=4,G為邊AD的中點,若E、F為邊AB上的兩個動點,點E在點F左側,且EF=1,當四邊形CGEF的周長最小時,請你在圖中確定點E、F的位置.(三角板、刻度尺作圖,保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

元宵節(jié),媽媽正在煮湯圓,爸爸給小明出了一道數(shù)學題:媽媽先后兩次往同一鍋里放入芝麻餡和豆沙餡的湯圓.第一次,放入湯圓若干只,此時,從鍋中隨機取出一只,是芝麻餡的湯圓的概率為
1
3
;第二次,放入5只芝麻餡和1只豆沙餡的湯圓,這時隨機取出一只,是芝麻餡的湯圓的概率為
1
2
,問鍋中共有湯圓多少只?
(1)請幫小明解答以上問題;
(2)煮熟后,媽媽從鍋中盛出6只芝麻餡和7只豆沙餡的湯圓之后,要小明自己盛剩下的湯圓,若小明從鍋中隨機盛出2只湯圓,用列表法或畫樹形圖的方法求“小明盛出芝麻餡和豆沙餡的恰好各1只”(記作事件A)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC中,AD是BC邊的中線,AC=17,BC=16,AD=15,△ABC的面積為
 

查看答案和解析>>

同步練習冊答案