科目:初中數(shù)學 來源:湖南省湘潭市2011年初中畢業(yè)學業(yè)考試數(shù)學試題 題型:044
已知,AB是⊙O的直徑,AB=8,點C在⊙O的半徑OA上運動,PC⊥AB,垂足為C,PC=5,PT為⊙O的切線,切點為T.
(1)如圖,當C點運動到O點時,求PT的長;
(2)如圖,當C點運動到A點時,連結(jié)PO、BT,求證:PO∥BT;
(3)如圖,設PT2=y(tǒng),AC=x,求y與x的函數(shù)關(guān)系式及y的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源:2008年溫州外國語學校第三次中考模擬試卷及答案、數(shù)學 題型:044
如圖①,矩形ABCD被對角線AC分為兩個直角三角形,AB=3,BC=6.現(xiàn)將Rt△ADC繞點C順時針旋轉(zhuǎn)90°,點A旋轉(zhuǎn)后的位置為點E,點D旋轉(zhuǎn)后的位置為點F.以C為原點,以BC所在直線為x軸,以過點C垂直于BC的直線為y軸,建立如圖②的平面直角坐標系.
(1)求直線AE的解析式;
(2)將Rt△EFC沿x軸的負半軸平行移動,如圖③.設OC=x(0<x≤9),Rt△EFC與Rt△ABO的重疊部分面積為s;
①當x=1與x=8時,分別求出s的值;
②S是否存在最大值?若存在,求出這個最大值及此時x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源:2009年廣東省湛江市中考數(shù)學試題及評分標準 題型:059
已知矩形紙片OABC的長為4,寬為3,以長OA所在的直線為x軸,O為坐標原點建立平面直角坐標系;點P是OA邊上的動點(與點O、A不重合),現(xiàn)將△POC沿PC翻折得到△PEC,再在AB邊上選取適當?shù)狞cD,將△PAD沿PD翻折,得到△PFD,使得直線PE、PF重合.
(1)若點E落在BC邊上,如圖①,求點P、C、D的坐標,并求過此三點的拋物線的函數(shù)關(guān)系式;
(2)若點E落在矩形紙片OABC的內(nèi)部,如圖②,設OP=x,AD=y(tǒng)當x為何值時,y取得最大值?
(3)在(1)的情況下,過點P、C、D三點的拋物線上是否存在點Q,使△PDQ是以PD為直角邊的直角三角形?若不存在,說明理由;若存在,求出點Q的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com