如圖,點(diǎn)A的坐標(biāo)為(3,0),點(diǎn)C的坐標(biāo)為(0,4),OABC為矩形,反比例函數(shù)的圖像過(guò)AB的中點(diǎn)D,且和BC相交于點(diǎn)E,F(xiàn)為第一象限的點(diǎn),AF=12,CF=13.
(1)求反比例函數(shù)和直線OE的函數(shù)解析式;
(2)求四邊形OAFC的面積.
解:(1)依題意,得點(diǎn)B的坐標(biāo)為(3,4),點(diǎn)D的坐標(biāo)為(3,2)
將(3,2)代入,得k=6.
所以反比例函數(shù)的解析式為.
設(shè)點(diǎn)E的坐標(biāo)為(m,4),將其代入,m=,
故點(diǎn)E的坐標(biāo)為(,4).
設(shè)直線OE的解析式為,將(,4)代入得
所以直線OE的解析式為.
(2)連結(jié)AC,由勾股定理得.
又∵ ,
∴ 由勾股定理的逆定理得∠CAF=90°.
∴。
【解析】(1)根據(jù)反比例圖像上點(diǎn)D的坐標(biāo)易求反比例函數(shù)的關(guān)系式;由于直線OE是一條過(guò)原點(diǎn)的直線,只要知道點(diǎn)E的坐標(biāo),而易得到點(diǎn)E的縱坐標(biāo)且點(diǎn)E又在反比例函數(shù)上,易求點(diǎn)E的橫坐標(biāo)。
(2)利用轉(zhuǎn)化思想,將不規(guī)則四邊形轉(zhuǎn)化成兩個(gè)直角三角形,其中是直角三角形需要利用勾股定理逆定理判斷。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
2 |
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
A、3
| ||
B、4 | ||
C、3 | ||
D、4
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com