已知,E是正方形ABCD的一邊AD上任一點(diǎn),EG⊥BD于G,EF⊥AC于F,若AB=4cm,則EF+EG=
2
2
2
2
cm.
分析:先判定四邊形EFOG是矩形,根據(jù)矩形的對(duì)邊相等可得EG=OF,再根據(jù)正方形的對(duì)角線平分一組對(duì)角可得∠EAF=45°,然后求出AF=EF,從而得到EF+EG=AO,最后根據(jù)等腰直角三角形的性質(zhì)解答.
解答:解:在正方形ABCD中,AC⊥BD,
又∵EG⊥BD,EF⊥AC,
∴四邊形EFOG是矩形,
∴EG=OF,
∵AC是正方形ABCD的對(duì)角線,
∴∠EAF=45°,
∴△AEF是等腰直角三角形,
∴AF=EF,
∴EF+EG=AF+OF=AO,
∵AB=4cm,
∴AO=
2
2
AB=
2
2
×4=2
2
cm.
故答案為:2
2
點(diǎn)評(píng):本題考查了正方形的對(duì)角線互相垂直平分的性質(zhì),對(duì)角線平分一組對(duì)角的性質(zhì),等腰直角三角形的性質(zhì),以及矩形的判定與性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)P是線段AB的黃金分割點(diǎn),且PA>PB,若S1表示以PA為邊的正方形的面積,S2表示長(zhǎng)為AB、寬為PB的矩形的面積,那么S1( 。㏒2
A、>B、=C、<D、無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點(diǎn)A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對(duì)應(yīng)的一次函數(shù)的解析式以及它與x軸的交點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廈門(mén)質(zhì)檢)如圖,已知四邊形ABCD是正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接PA、PD.
(1)若∠PAB=37°,正方形的邊長(zhǎng)為5,求PA的長(zhǎng)度;
(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
(2)若PA=PD,過(guò)點(diǎn)P作PE⊥AD,垂足為E,判斷直線PE與半圓的位置關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•太原一模)如圖1,已知四邊形ABCD是正方形,對(duì)角線AC、BD相交于點(diǎn)E,以點(diǎn)E為頂點(diǎn)作正方形EFGH,使點(diǎn)A、D分別在EH和EF上,連接BH、AF.
(1)判斷并說(shuō)明BH和AF的數(shù)量關(guān)系;
(2)將正方形EFGH繞點(diǎn)E順時(shí)針?lè)较蛐D(zhuǎn)θ(0°≤θ≤360°),設(shè)AB=a,EH=b,且a<2b.
①如圖2,連接AG,設(shè)AG=x,請(qǐng)直接寫(xiě)出x的取值范圍;當(dāng)x取最大值時(shí),直接寫(xiě)出θ的值;
②如果四邊形ABDH是平行四邊形,請(qǐng)?jiān)趥溆脠D中補(bǔ)全圖形,并求a與b的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知O點(diǎn)是正方形ABCD的兩條對(duì)角線的交點(diǎn),則AO:AB:AC=
1:
2
:2
1:
2
:2

查看答案和解析>>

同步練習(xí)冊(cè)答案