【題目】在平面直角坐標(biāo)系中,拋物線如圖所示.已知點(diǎn)A的坐標(biāo)為(1,-1),過點(diǎn)A軸交拋物線于點(diǎn),過點(diǎn)交拋物線于點(diǎn),過點(diǎn)軸交拋物線于點(diǎn),過點(diǎn)交拋物線于點(diǎn),……,依次進(jìn)行下去,則點(diǎn)的坐標(biāo)為(

A.1010,-10102B.-1010,-10102C.1009-10092D.-1009,-10092

【答案】B

【解析】

根據(jù)二次函數(shù)的對(duì)稱性求出的坐標(biāo),然后由,則k相等,可求出解析式,與拋物線聯(lián)立可求,以此類推,根據(jù)坐標(biāo)的變化找出規(guī)律,得到.

A的坐標(biāo)為(1,-1), 軸,根據(jù)對(duì)稱性可得

設(shè)OA直線解析式y=kx,代入(1,-1)得k=-1,又因?yàn)?/span>,所以兩直線k相等,

設(shè)解析式為y=-x+b,代入,得,1+b=-1,∴b=-2,則y=-x-2,

與拋物線聯(lián)立得,解得,∴

同理可得,,…,

以此類推

,

所以,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙OAB于點(diǎn)F,連接DB交⊙O于點(diǎn)HEBC上的一點(diǎn),且BEBF,連接DE

1)求證:DE是⊙O的切線.

2)若BF2BD2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于拋物線,下列說法中錯(cuò)誤的是(

A.y的最小值為1

B.圖象頂點(diǎn)坐標(biāo)為(2,1),對(duì)稱軸為直線x=2

C.當(dāng)x2時(shí),y的值隨x值的增大而增大,當(dāng)x2時(shí),y的值隨x值的增大而減小

D.它的圖象可以由的圖象向右平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度得到

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形 ABCD 中,AB5AD3.以點(diǎn) B 為中心,順時(shí)針旋轉(zhuǎn)矩形 BADC,得到矩形 BEFG,點(diǎn) A、D、C 的對(duì)應(yīng)點(diǎn)分別為 E、F、G

1)如圖1,當(dāng)點(diǎn) E 落在 CD 邊上時(shí),求線段 CE 的長(zhǎng);

2)如圖2,當(dāng)點(diǎn) E 落在線段 DF 上時(shí),求證:∠ABD=∠EBD

3)在(2)的條件下,CDBE 交于點(diǎn) H,求線段 DH 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種文具,進(jìn)價(jià)為5元/件.售價(jià)為6元/件時(shí),當(dāng)天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價(jià)每上漲0.5元,當(dāng)天的銷售量就減少5件.設(shè)當(dāng)天銷售單價(jià)統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤(rùn)為元.

1)求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)要使當(dāng)天銷售利潤(rùn)不低于240元,求當(dāng)天銷售單價(jià)所在的范圍;

3)若每件文具的利潤(rùn)不超過,要想當(dāng)天獲得利潤(rùn)最大,每件文具售價(jià)為多少元?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx4a經(jīng)過A(﹣1,0)、C0,4)兩點(diǎn),與x軸交于另一點(diǎn)B,

1)求拋物線的解析式;

2)已知點(diǎn)Dm,m+1)在第一象限的拋物線上,求點(diǎn)D的坐標(biāo).

3)設(shè)直線BCymx+nk0),若mx+nax2+bx4a,結(jié)合函數(shù)圖象,寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個(gè)一元二次方程:M:N:,其中,以下列四個(gè)結(jié)論中,錯(cuò)誤的是( )

A、如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根;

B、如果方程M有兩根符號(hào)相同,那么方程N(yùn)的兩根符號(hào)也相同;

C、如果5是方程M的一個(gè)根,那么是方程N(yùn)的一個(gè)根;

D、如果方程M和方程N(yùn)有一個(gè)相同的根,那么這個(gè)根必是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差yx稱為P點(diǎn)的“坐標(biāo)差”,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”

(1)①點(diǎn)A(1,3) 的“坐標(biāo)差”為 。

②拋物線y=x2+3x+3的“特征值”為 。

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點(diǎn)B(m,0)與點(diǎn)C分別是此二次函數(shù)的圖象與x軸和y軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等。

①直接寫出m= (用含c的式子表示)

②求此二次函數(shù)的表達(dá)式。

(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點(diǎn)D、E請(qǐng)直接寫出⊙M的“特征值”為

查看答案和解析>>

同步練習(xí)冊(cè)答案