如圖,在平面直角坐標(biāo)系上有個點P(1,0),點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位,第4次向右跳動3個單位,第5次又向上跳動1個單位,第6次向左跳動4個單位,…,依此規(guī)律跳動下去,點P第100次跳動至點P100的坐標(biāo)是   
【答案】分析:解決本題的關(guān)鍵是分析出題目的規(guī)律,以奇數(shù)開頭的相鄰兩個坐標(biāo)的縱坐標(biāo)是相同的,所以第100次跳動后,縱坐標(biāo)為100÷2=50;其中4的倍數(shù)的跳動都在y軸的右側(cè),那么第100次跳動得到的橫坐標(biāo)也在y軸右側(cè).P1橫坐標(biāo)為1,P4橫坐標(biāo)為2,P8橫坐標(biāo)為3,依此類推可得到P100的橫坐標(biāo).
解答:解:經(jīng)過觀察可得:以奇數(shù)開頭的相鄰兩個坐標(biāo)的縱坐標(biāo)是相同的,所以第100次跳動后,縱坐標(biāo)為100÷2=50;
其中4的倍數(shù)的跳動都在y軸的右側(cè),那么第100次跳動得到的橫坐標(biāo)也在y軸右側(cè).P1橫坐標(biāo)為1,P4橫坐標(biāo)為2,P8橫坐標(biāo)為3,依此類推可得到:Pn的橫坐標(biāo)為n÷4+1(n是4的倍數(shù)).
故點P100的橫坐標(biāo)為:100÷4+1=26,縱坐標(biāo)為:100÷2=50,點P第100次跳動至點P100的坐標(biāo)是(26,50).
故答案填(26,50).
點評:本題的關(guān)鍵是分析出題目的規(guī)律,找出題目中點的坐標(biāo)的規(guī)律,總結(jié)規(guī)律是近幾年出現(xiàn)的常見題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案