如圖,⊙O的直徑AB=4,C為圓周上一點,AC=2,過點C作⊙O的切線l,過點B作l的垂線BD,垂足為D,BD與⊙O交于點E.
求證:四邊形OBEC是菱形.
【答案】分析:易得△AOC是等邊三角形,則∠AOC=60°,根據(jù)圓周角定理得到∠AEC=30°;根據(jù)切線的性質(zhì)得到OC⊥l,則有OC∥BD,再根據(jù)直徑所對的圓周角為直角得到∠AEB=90°,則∠EAB=30°,可證得AB∥CE,得到四邊形OBEC為平行四邊形,再由OB=OC,即可判斷四邊形OBEC是菱形.
解答:證明:在△AOC中,AC=2,
∵AO=OC=2,
∴△AOC是等邊三角形.
∴∠AOC=60°,
∴∠AEC=30°;
而DC為⊙O的切線,
∴OC⊥l,
而BD⊥l,
∴OC∥BD,
∴∠ABD=∠AOC=60°,
又∵AB為⊙O的直徑,
∴∠AEB=90°,
∴∠EAB=30°,
∴∠EAB=∠AEC.
∴AB∥CE.
∴四邊形OBEC為平行四邊形.
又∵OB=OC=2.
∴四邊形OBEC是菱形.
點評:本題考查了切線的性質(zhì):圓的切線垂直于過切點的半徑.也考查了圓周角定理及其推論以及菱形的判定方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習冊答案