如圖,已知銳角△ABC的面積為1,正方形DEFG是△ABC的一個內(nèi)接三角形,DG∥BC,求正方形DEFG面積的最大值.

解:∵過點A作AN⊥BC交DG于點M,交BC于點N,設(shè)AN=h,DE=x=MN=DG,
BC•h=1,
∵DG∥BC,
∴△ADG∽△ABC,故=,即=,
∴x=,
設(shè)正方形的面積為S,則S=x2=(2=(2=[]2≤()=
分析:過點A作AN⊥BC交DG于點M,交BC于點N,設(shè)AN=h,DE=x=MN=DG,根據(jù)DG∥BC,再由△ADG∽△ABC即可求出x的表達式,再代入求出三角形的面積即可.
點評:本題考查的是相似三角形的判定與性質(zhì),根據(jù)題意構(gòu)造出直角三角形是解答磁體的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知銳角△ABC的邊BC的長為6,面積為12,PQ∥BC,點P在AB上,點Q在AC上,四邊形RPQS為正方形(RS與A在PQ的異側(cè)),其邊長為x,正方形RPQS與△ABC的公共面積為y.
(1)當正方形RPQS的邊RS恰好落在BC上時,求邊長x.
精英家教網(wǎng) 精英家教網(wǎng)
(2)當RS不落在BC上時,求y關(guān)于x的函數(shù)關(guān)系式以及自變量x的取值范圍.(可以將圖形畫在備用的圖形中)
精英家教網(wǎng)
(3)求y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•裕華區(qū)二模)如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關(guān)系.
(1)實驗與操作:
如圖②,如果上面三角板的一條直角邊旋轉(zhuǎn)到CM的位置時,它的斜邊恰好旋轉(zhuǎn)到CN的位置,請在網(wǎng)格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關(guān)系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數(shù)量關(guān)系,為什么?
(3)拓廣與運用:
如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知銳角△ABC中,CD、BE分別是AB、AC邊上的高,M、N分別是線段BC、DE的中點.
(1)求證:MN⊥DE;
(2)連結(jié)DM,ME,猜想∠A與∠DME之間的關(guān)系,并寫出推理過程;
(3)若將銳角△ABC變?yōu)殁g角△ABC,如圖,上述(1)(2)中的結(jié)論是否都成立?若結(jié)論成立,直接回答,不需證明;若結(jié)論不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB和CD相交于點O(∠AOC為銳角)
(1)寫出∠AOC和∠BOD的大小關(guān)系
∠AOC=∠BOD
∠AOC=∠BOD
;判斷的依據(jù)是
對頂角相等
對頂角相等

(2)過點O作射線OE、OF,若∠COE=90°,OF平分∠AOE,畫出圖形并求∠AOF+∠COF的度數(shù),說明你的理由.
(3)在(2)的條件下,若∠AOD=120°,請計算∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知直線AB和CD相交于點O(∠AOC為銳角)
(1)寫出∠AOC和∠BOD的大小關(guān)系______;判斷的依據(jù)是______.
(2)過點O作射線OE、OF,若∠COE=90°,OF平分∠AOE,畫出圖形并求∠AOF+∠COF的度數(shù),說明你的理由.
(3)在(2)的條件下,若∠AOD=120°,請計算∠COF的度數(shù).

查看答案和解析>>

同步練習冊答案