【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點D,交BC于點E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長.

【答案】
(1)解:證明:連結(jié)AE,如圖,

∵AC為⊙O的直徑,

∴∠AEC=90°,

∴AE⊥BC,

而AB=AC,

∴BE=CE;


(2)解:連結(jié)DE,如圖,

∵BE=CE=3,

∴BC=6,

∵∠BED=∠BAC,

而∠DBE=∠CBA,

∴△BED∽△BAC,

= ,即 = ,

∴BA=9,

∴AC=BA=9.


【解析】(1)連結(jié)AE,如圖,根據(jù)圓周角定理,由AC為⊙O的直徑得到∠AEC=90°,然后利用等腰三角形的性質(zhì)即可得到BE=CE;(2)連結(jié)DE,如圖,證明△BED∽△BAC,然后利用相似比可計算出AB的長,從而得到AC的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c,經(jīng)過A(0,﹣4),B(x1 , 0),C(x2 , 0)三點,且|x2﹣x1|=5.

(1)求b,c的值;
(2)在拋物線上求一點D,使得四邊形BDCE是以BC為對角線的菱形;
(3)在拋物線上是否存在一點P,使得四邊形BPOH是以OB為對角線的菱形?若存在,求出點P的坐標,并判斷這個菱形是否為正方形?若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我市實施“城鄉(xiāng)環(huán)境綜合治理”期間,某校組織學生開展“走出校門,服務社會”的公益活動.八年級一班王浩根據(jù)本班同學參加這次活動的情況,制作了如下的統(tǒng)計圖表: 該班學生參加各項服務的頻數(shù)、頻率統(tǒng)計表:

服務類別

頻數(shù)

頻率

文明宣傳員

4

0.08

文明勸導員

10

義務小警衛(wèi)

8

0.16

環(huán)境小衛(wèi)士

0.32

小小活雷鋒

12

0.24

請根據(jù)上面的統(tǒng)計圖表,解答下列問題:

(1)該班參加這次公益活動的學生共有名;
(2)請補全頻數(shù)、頻率統(tǒng)計表和頻數(shù)分布直方圖;
(3)若八年級共有900名學生報名參加了這次公益活動,試估計參加文明勸導的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形OAB的一邊OA在x軸上,雙曲線y= 在第一象限內(nèi)的圖象經(jīng)過OB邊的中點C,則點B的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD是∠BAC的平分線,EF垂直平分AD交AB于E,交AC于F. 求證:四邊形AEDF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.

(1)將圖②中的陰影部分面積用2種方法表示可得一個等式,求等式。

(2)若m+2n=7,mn=3,利用(1)的結(jié)論求m﹣2n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一些體積為1的小立方體恰好可以組成體積為1的大立方體,把所有這些小立方體一個接一個向上摞起來,大概有多高呢?以下選項中最接近這一高度的是(

A. 蓮花山望海觀音的高度 B. 滴水巖森林公園青蘿嶂高度

C. 廣州塔的高度 D. 國際航班飛行高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:|1﹣ |+(π﹣2014)0﹣2sin45°+( 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=10,∠A=40°,點D為弧BC的中點,點P是直徑AB上的一個動點,PC+PD的最小值為

查看答案和解析>>

同步練習冊答案