如圖,直線a經(jīng)過正方形ABCD的頂點A,分別過頂點B、D作BF⊥EF于F,DE⊥EF于E,若DE=9,EF=15,則BF=     

 


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,直線l:y=
43
x+4
交x軸、y軸于A、B點,四邊形ABCD為等腰梯形,BC∥AD,AD=12.
(1)寫出點A、B、C的坐標;
(2)若直線l沿x軸正方向平移m(m>0)個單位長度,與BC、AD分別交于E、F點,當四邊形ABEF的面積為24時,求直線EF的表達式以及點F到腰CD的距離;
(3)若B點沿BC方向,從B到C運動,速度為每秒1個單位長度,A點同時沿AD方向,從A到D運動,速度為每秒2個單位長度,經(jīng)過t秒后,A到達P處,精英家教網(wǎng)B到達Q處,問:是否存在t,使得△PQD為直角三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線l:y=
32
x+3交x軸、y軸于A、B點,四邊形ABCD為等腰梯精英家教網(wǎng)形,BC∥AD,D點坐標為(6,0).
(1)求:A、B、C點坐標;
(2)若直線l沿x軸正方向平移m個(m>0)單位長度,與AD、BC分別交于N、M點,當四邊形ABMN的面積為12個單位面積時,求平移后的直線的解析式;
(3)如果B點沿BC方向,從B到C運動,速度為每秒2個單位長度,A點同時沿AD方向,從A到D運動,速度為每秒3個單位長度,經(jīng)過t秒的運動,A到達A′處,B到達B′處,問:是否能使得A′B′平分∠BB′D?若能,請求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年福建省漳州市高中自主招生四校聯(lián)考數(shù)學試卷(解析版) 題型:解答題

如圖,直線l:交x軸、y軸于A、B點,四邊形ABCD為等腰梯形,BC∥AD,AD=12.
(1)寫出點A、B、C的坐標;
(2)若直線l沿x軸正方向平移m(m>0)個單位長度,與BC、AD分別交于E、F點,當四邊形ABEF的面積為24時,求直線EF的表達式以及點F到腰CD的距離;
(3)若B點沿BC方向,從B到C運動,速度為每秒1個單位長度,A點同時沿AD方向,從A到D運動,速度為每秒2個單位長度,經(jīng)過t秒后,A到達P處,B到達Q處,問:是否存在t,使得△PQD為直角三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年福建省三明市大田二中自主招生數(shù)學模擬試卷(3)(解析版) 題型:解答題

如圖,直線l:交x軸、y軸于A、B點,四邊形ABCD為等腰梯形,BC∥AD,AD=12.
(1)寫出點A、B、C的坐標;
(2)若直線l沿x軸正方向平移m(m>0)個單位長度,與BC、AD分別交于E、F點,當四邊形ABEF的面積為24時,求直線EF的表達式以及點F到腰CD的距離;
(3)若B點沿BC方向,從B到C運動,速度為每秒1個單位長度,A點同時沿AD方向,從A到D運動,速度為每秒2個單位長度,經(jīng)過t秒后,A到達P處,B到達Q處,問:是否存在t,使得△PQD為直角三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線l:y=數(shù)學公式x+3交x軸、y軸于A、B點,四邊形ABCD為等腰梯形,BC∥AD,D點坐標為(6,0).
(1)求:A、B、C點坐標;
(2)若直線l沿x軸正方向平移m個(m>0)單位長度,與AD、BC分別交于N、M點,當四邊形ABMN的面積為12個單位面積時,求平移后的直線的解析式;
(3)如果B點沿BC方向,從B到C運動,速度為每秒2個單位長度,A點同時沿AD方向,從A到D運動,速度為每秒3個單位長度,經(jīng)過t秒的運動,A到達A′處,B到達B′處,問:是否能使得A′B′平分∠BB′D?若能,請求出t的值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案