若等腰梯形ABCD的上、下底之和為2,并且兩條對角線所成的銳角為60°,則等腰梯形ABCD的面積為     。
p;【答案】解析:
分兩種情況考慮:
(i)當(dāng)∠AOB=∠COD=60°
∵四邊形ABCD是等腰梯形
∴OA=OB,OC=OD
∵∠AOB=∠COD=60°
∴△OAB,△OCD均是等邊三角形
設(shè)AB=x,則CD=2﹣x
∴OE=x,OF=(2﹣x)
∴EF=
∴S梯形ABCD=(AB+CD)•EF=×2×=;
(ii)當(dāng)∠AOD=∠BOC=60°
∴∠AOB=∠COD=120°
∴∠OAB=∠OBA=∠ODC=∠OCD=30°
設(shè)AB=x,則CD=2﹣x
∴OE=x,OF=(2﹣x)
∴EF=
∴S梯形ABCD=(AB+CD)•EF=×2×=
綜上,等腰梯形ABCD的面積為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)當(dāng)x=6時,反比例函數(shù)y=
k
x
和一次函數(shù)y=
3
2
x-7
的值相等.
(1)求反比例函數(shù)的解析式;
(2)若等腰梯形ABCD的頂點(diǎn)A和B(n,-1)在這個一次函數(shù)的圖象上,頂點(diǎn)C和D(2,m)在這個反比例函數(shù)的圖象上,且BC∥AD∥y軸,求等腰梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若等腰梯形ABCD的上,下底之和為2,并且兩條對角線所交的銳角為60°,則等腰梯形ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、在平面上有且只有4個點(diǎn),這4個點(diǎn)中有一個獨(dú)特的性質(zhì):連接每兩點(diǎn)可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點(diǎn)稱作準(zhǔn)等距點(diǎn).例如正方形ABCD的四個頂點(diǎn)(如圖1),有AB=BC=CD=DA,AC=BD.其實(shí)滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個點(diǎn),滿足AB=BC=CA,OA=OB=OC;如圖3中A、B、C、O四個點(diǎn),滿足OA=OB=OC=BC,AB=AC.
(1)如圖4,若等腰梯形ABCD的四個頂點(diǎn)是準(zhǔn)等距點(diǎn),且AD∥BC.
①寫出相等的線段(不再添加字母);
②求∠BCD的度數(shù).
(2)請?jiān)佼嫵鲆粋四邊形,使它的四個頂點(diǎn)為準(zhǔn)等距點(diǎn),并寫出相等的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河北一模)平面上有且只有4個點(diǎn),這4個點(diǎn)中有一個獨(dú)特的性質(zhì):連接每兩點(diǎn)可得到6條線段,這6條線段有且只有兩種長度.我們把這四個點(diǎn)稱作準(zhǔn)等距點(diǎn).例如正方形ABCD的四個頂點(diǎn)(如圖1),有AB=BC=CD=DA,AC=BD.其實(shí)滿足這樣性質(zhì)的圖形有很多,如圖2中A、B、C、O四個點(diǎn),滿足AB=BC=CA,OA=OB=OC.
(1)如圖3,若等腰梯形ABCD的四個頂點(diǎn)是準(zhǔn)等距點(diǎn),且AD∥BC.寫出相等的線段(不再添加字母);
(2)利用(1)的結(jié)論,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•成都一模)若等腰梯形ABCD的上、下底之和為4,并且兩條對角線所夾銳角為60°,則該等腰梯形的面積為
4
3
4
3
3
4
3
4
3
3
(結(jié)果保留根號的形式).

查看答案和解析>>

同步練習(xí)冊答案