【題目】已知數(shù)軸上兩點(diǎn)A,B對(duì)應(yīng)的數(shù)分別為﹣1、3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn).
(1)若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,寫出點(diǎn)P對(duì)應(yīng)的數(shù) ;
(2)若點(diǎn)P到點(diǎn)A,B的距離之和為6,那么點(diǎn)P對(duì)應(yīng)的數(shù) ;
(3)點(diǎn)A,B分別以2個(gè)單位長(zhǎng)度/分、1個(gè)單位長(zhǎng)度/分的速度向右運(yùn)動(dòng),同時(shí)P點(diǎn)以6個(gè)單位長(zhǎng)度/分的速度從O點(diǎn)向左運(yùn)動(dòng).當(dāng)遇到A時(shí),點(diǎn)P立刻以同樣的速度向右運(yùn)動(dòng),并不停地往返于點(diǎn)A與點(diǎn)B之間,求當(dāng)點(diǎn)A與點(diǎn)B重合時(shí),點(diǎn)P所經(jīng)過(guò)的總路程是多少?
【答案】(1)1;(2)﹣2或4;(3)點(diǎn)P所經(jīng)過(guò)的總路程是24個(gè)單位長(zhǎng)度;
【解析】
(1)若點(diǎn)P對(duì)應(yīng)的數(shù)與-1、3差的絕對(duì)值相等,則點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等.
(2)若點(diǎn)P對(duì)應(yīng)的數(shù)與-1、3差的絕對(duì)值之和為6,則點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為6.
(3)設(shè)經(jīng)過(guò)x分鐘點(diǎn)A與點(diǎn)B重合,根據(jù)點(diǎn)A比點(diǎn)B運(yùn)動(dòng)的距離多4,列出方程,求出x的值,即為點(diǎn)P運(yùn)動(dòng)的時(shí)間,再乘以點(diǎn)P運(yùn)動(dòng)的速度,可得點(diǎn)P經(jīng)過(guò)的總路程.
(1)∵1﹣(﹣1)=2,2的絕對(duì)值是2,1﹣3=﹣2,﹣2的絕對(duì)值是2,
∴點(diǎn)P對(duì)應(yīng)的數(shù)是1.
故答案為:1;
(2)當(dāng)P在AB之間,PA+PB=4(不可能有),
當(dāng)P在A的左側(cè),PA+PB=﹣1﹣x+3﹣x=6,得x=﹣2;
當(dāng)P在B的右側(cè),PA+PB=x﹣(﹣1)+x﹣3=6,得x=4.
故點(diǎn)P對(duì)應(yīng)的數(shù)為﹣2或4.
故答案為:﹣2或4;
(3)解:設(shè)經(jīng)過(guò)x分鐘點(diǎn)A與點(diǎn)B重合,根據(jù)題意得:
2x=4+x,
解得x=4,
∴6x=24.
答:點(diǎn)P所經(jīng)過(guò)的總路程是24個(gè)單位長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)圖1,圖2所提供的信息,解答下列問題:
(1)2007年海南省城鎮(zhèn)居民人均可支配收入為元,比2006年增長(zhǎng)%;
(2)求2008年海南省城鎮(zhèn)居民人均可支配收入(精確到1元),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)圖1指出:2005﹣2008年海南省城鎮(zhèn)居民人均可支配收入逐年(填“增加”或“減少”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,BD=OB,點(diǎn)C在圓上,∠CAB=30°.
(1)求證:DC是⊙O的切線.
(2)若BD=1cm,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對(duì)角線BD上一點(diǎn),且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過(guò)點(diǎn)B作BM⊥x軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合.展開后,折痕DE分別交AB、AC于點(diǎn)E、G.連接GF.下列結(jié)論:①∠AGD=112.5°;②AD:AE=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2 OG。其中正確結(jié)論的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+mx+2的圖象與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交交于點(diǎn)B,且OA:OB=1:2.設(shè)此二次函數(shù)圖象的頂點(diǎn)為D.
(1)求這個(gè)二次函數(shù)的解析式;
(2)將△OAB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)B落到點(diǎn)C的位置.將上述二次函數(shù)圖象沿y軸向上或向下平移后經(jīng)過(guò)點(diǎn)C.請(qǐng)直接寫出點(diǎn)C的坐標(biāo)和平移后所得圖象的函數(shù)解析式;
(3)設(shè)(2)中平移后所得二次函數(shù)圖象與y軸的交點(diǎn)為B1 , 頂點(diǎn)為D1 . 點(diǎn)P在平移后的二次函數(shù)圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:關(guān)于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求證:無(wú)論m取何值時(shí),方程恒有實(shí)數(shù)根;
(2)若關(guān)于x的二次函數(shù)y=mx2﹣(3m﹣1)x+2m﹣2的圖象與x軸兩交點(diǎn)間的距離為2時(shí),求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)O是等邊△ABC內(nèi)的任一點(diǎn),連接OA,OB,OC.
(1)如圖1,已知∠AOB=150°,∠BOC=120°,將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC.
①∠DAO的度數(shù)是多少?
②用等式表示線段OA,OB,OC之間的數(shù)量關(guān)系,并證明;
(2)設(shè)∠AOB=α,∠BOC=β.
①當(dāng)α,β滿足什么關(guān)系時(shí),OA+OB+OC有最小值?請(qǐng)?jiān)趫D2中畫出符合條件的圖形,并說(shuō)明理由;
②若等邊△ABC的邊長(zhǎng)為1,直接寫出OA+OB+OC的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com