已知△ABC中,∠ABC與∠ACB的平分線(xiàn)相交于O點(diǎn)
(1)若∠1+∠2=50°,則∠O=______;
(2)若∠ABC+∠ACB=120°,則∠O=______;
(3)若∠A=70°,則∠O=______;
(4)通過(guò)計(jì)算,你發(fā)現(xiàn)∠O與∠A的關(guān)系是什么?并說(shuō)明理由.
(1)∵∠1+∠2=50°,
∴∠O=180°-50°=130°;
故答案為:130°;

(2)∵∠ABC與∠ACB的平分線(xiàn)相交于O點(diǎn),
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACB,
∵∠ABC+∠ACB=120°,
∴∠1+∠2=60°,
∴∠O=180°-60°=120°;
故答案為:120°;

(3)∵∠A=70°,
∴∠ABC+∠ACB=180°-70°=110°,
∵∠ABC與∠ACB的平分線(xiàn)相交于O點(diǎn),
∴∠1=
1
2
∠ABC,∠2=
1
2
∠ACB,
∴∠1+∠2=55°,
∴∠O=180°-55°=125°;
故答案為:125°;

(4)∠O=90°+
1
2
∠A;
理由:∠O=180°-(∠1+∠2)
=180°-
1
2
(∠ABC+∠ACB)
=180°-
1
2
(180°-∠A)
=90°+
1
2
∠A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,∠A,∠B都是銳角,則∠C是( 。
A.銳角B.直角
C.鈍角D.以上都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC一內(nèi)角和外角角平分線(xiàn)相交于點(diǎn)P,已知∠A的度數(shù)為α,則∠BPC的度數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,∠B,∠C的平分線(xiàn)相交于點(diǎn)P,設(shè)∠A=x°,用x的代數(shù)式表示∠BPC的度數(shù),正確的是(  )
A.90+
1
2
x
B.90-
1
2
x
C.90+2xD.90+x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,則∠CDF=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把一副三角板按如圖所示疊放在一起,如圖所示,則∠α=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,CD平分∠ACB,BF是△ABC的高,BF、CD相交于點(diǎn)M.
(1)若∠A=80°,∠ABC=50°,求∠BMC的度數(shù).
(2)若其他條件均不變,只把題中的“BF是△ABC的高”改為“BF是△ABC的角平分線(xiàn)”的情況下,請(qǐng)?zhí)剿鳌螦與∠BMC的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)BO、CO分別平分∠ABC和∠ACB,設(shè)∠A=n°(n為已知數(shù))求∠O的度數(shù);
(2)BO、CO分別是△ABC兩外角的平分線(xiàn),設(shè)∠A=n°(n為已知數(shù))求∠O的度數(shù);
(3)BO、CO分別平分∠ABC和∠ACD,設(shè)∠A=n°(n為已知數(shù))求∠O的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

三角形中下列結(jié)論可能存在的有( 。
①最小內(nèi)角是20°②最大內(nèi)角是100°③最小內(nèi)角為89°④三個(gè)內(nèi)角都等于60°⑤有兩個(gè)內(nèi)角都等于80°.
A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案