【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∠BAC,∠ACB的平分線相交于點(diǎn)E,過點(diǎn)E作EF∥BC交AC于點(diǎn)F,則EF的長為( )
A. B. C. D.
【答案】D
【解析】分析:延長FE交AB于點(diǎn)D,作EG⊥BC、作EH⊥AC,由EF∥BC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠DAE=∠HAE,從而知四邊形BDEG是正方形,再證△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,設(shè)BD=BG=x,則AD=AH=3-x、CG=CH=4-x,由AC=5可得x=1,即BD=DE=1、AD=3,再證△ADF∽△ABC可得DF=,據(jù)此得出EF=DF-DE=.
詳解:如圖,延長FE交AB于點(diǎn)D,作EG⊥BC于點(diǎn)G,作EH⊥AC于點(diǎn)H,
∵EF∥BC、∠ABC=90°,
∴FD⊥AB,
∵EG⊥BC,
∴四邊形BDEG是矩形,
∵AE平分∠BAC、CE平分∠ACB,
∴ED=EH=EG,∠DAE=∠HAE,
∴四邊形BDEG是正方形,
在△DAE和△HAE中,
∵,
∴△DAE≌△HAE(SAS),
∴AD=AH,
同理△CGE≌△CHE,
∴CG=CH,
設(shè)BD=BG=x,則AD=AH=6-x、CG=CH=8-x,
∵AC=,
∴6-x+8-x=10,
解得:x=2,
∴BD=DE=2,AD=4,
∵DF∥BC,
∴△ADF∽△ABC,
∴,即,
解得:DF=,
則EF=DF-DE=-1=,
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E、F為對角線BD上的兩點(diǎn),且∠DAE=∠BCF.
(1)求證:AE=CF;
(2)求證:AE∥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店將進(jìn)價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,問應(yīng)將每件售價定為多少元時,才能使每天利潤為640元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,△ACB的銳角頂點(diǎn)A在△ECD的斜邊DE上,若AE=,AC=,則DE=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動1個單位長度,再向左移動2個單位長度,再向右移動3個單位長度,再向左移動4個單位長度,……,移動2019次后,該點(diǎn)所對應(yīng)的數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書香校園”活動中,學(xué)校計劃開展四項活動:“A﹣國學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項活動,學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計圖中,希望參加活動D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計圖.
(2)學(xué),F(xiàn)有800名學(xué)生,請根據(jù)圖中信息,估算全校學(xué)生希望參加活動A有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校抽查了某班級某月10天的用電量,數(shù)據(jù)如下表:
用電量/度 | 8 | 9 | 10 | 13 | 14 | 15 |
天數(shù) | 1 | 1 | 2 | 3 | 1 | 2 |
(1)這10天用電量的眾數(shù)是______度,中位數(shù)是______度;
(2)求這個班級平均每天的用電量;
(3)該校共有20個班級,該月共計30天,試估計該校該月總的用電量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+mx+n與x軸相交于點(diǎn)A、B兩點(diǎn),過點(diǎn)B的直線y=x+b交拋物線于另一點(diǎn)C(-5,6),點(diǎn)D是線段BC上的一個動點(diǎn)(點(diǎn)D與點(diǎn)B、C不重合),作DE∥AC,交該拋物線于點(diǎn)E,
(1)求m,n,b的值;
(2)求tan∠ACB;
(3)探究在點(diǎn)D運(yùn)動過程中,是否存在∠DEA=45°,若存在,則求此時線段AE的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為菱形,點(diǎn)E在邊AD上,點(diǎn)F在邊CD上
(1) 若AE=CF,求證:EB=BF
(2) 若AD=4,DE=CF,且△EFB為等邊三角形,求四邊形DEBF的面積
(3) 若∠DAB=60°,點(diǎn)H在邊BC上,且BH=HC=2.若∠DFA=2∠HAB,直接寫出CF的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com