【題目】如圖,將銳角為的直角三角板MPN的一個銳角頂點P與邊長為4的正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉(zhuǎn),的兩邊分別與正方形的邊BC、DC或其延長線相交于點E、F,連結(jié)EF.在三角板旋轉(zhuǎn)過程中,當(dāng)的一邊恰好經(jīng)過BC邊的中點時,則EF的長為_____.
【答案】或
【解析】
①當(dāng)MA經(jīng)過BC的中點E時,延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF,利用勾股定理列出方程即可;②NA經(jīng)過BC的中點H時,在CD上截取DQ=BE,連接AQ,同理證明△ABE≌△ADQ(SAS),再證明△QAF≌△EAF(SAS)和△ABH≌△FCH(ASA),根據(jù)勾股定理列出方程即可解決問題.
解:①當(dāng)MA經(jīng)過BC的中點E時,延長FD至G,使DG=BE,連接AG,如下圖所示,
∵ABCD是正方形,
∴AB=AD,∠ABE=∠ADG=∠DAB=90°,
又∵BE=DG,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠DAG=∠EAB,
∵∠EAF=45°,
∴∠DAF+∠EAB=45°,
∴∠DAF+∠DAG=45°,
∴∠GAF=∠EAF=45°,
∵AF=AF,
∴△GAF≌△EAF,
∴EF=GF,
∴GF=DF+DG=DF+BE,
∴EF=DF+BE.
∵點E是BC的中點,
∴BE=CE=2,
設(shè)FD=x,則FG=EF=2+x,FC=4x.
在Rt△EFC中,(x+2)2=(4x)2+22,
∴x=,
∴EF=x+2=.
②當(dāng)NA經(jīng)過BC的中點H時,在CD上截取DQ=BE,連接AQ,如下圖所示,
由情況①可知,△ABE≌△ADQ(SAS),
∴AE=AQ,∠DAQ=∠EAB,
∴∠DAQ+∠BAQ=∠EAB+∠BAQ=90°,
∵∠EAF=45°,
∴∠QAF=∠EAF=45°,
∵AF=AF,
∴△QAF≌△EAF(SAS),
∴EF=QF,
又∵點H是BC的中點,
∴BH=CH,
∵∠ABH=∠FCH,∠BHA=∠CHF,
∴△ABH≌△FCH(ASA),
∴CF=AB=4,
設(shè)BE=DQ=x,則EC=4+x,EF=QF=8x,
∵CH=BH=2,CF=AB=4,
由勾股定理得到:(4+x)2+42=(8x)2,
∴x=,
∴EF=8=
綜上所述,EF的長為或,
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下面的推理過程補充完整,并在括號內(nèi)注明理由.
如圖,已知∠B+∠BCD=180°,∠B=∠D.
試說明:∠E=∠DFE
解:∠B+∠BCD=180°(已知)
∴AB∥CD( )
∴∠B=∠DCE( )
又∵∠B=∠D(已知)
∴∠DCE= ( )
∴AD∥BE( )
∴∠E=∠DFE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在解一元二次方程時,發(fā)現(xiàn)有這樣一種解法:
如:解方程.
解:原方程可變形,得: .
,
,
.
直接開平方并整理,得. , .
我們稱小明這種解法為“平均數(shù)法”.
(1)下面是小明用“平均數(shù)法”解方程時寫的解題過程.
解:原方程可變形,得: .
,
.
直接開平方并整理,得. , .
上述過程中的a、b、c、d表示的數(shù)分別為 , , , .
(2)請用“平均數(shù)法”解方程: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程,解應(yīng)用題
甲乙兩人相約周末到影院看電影,他們的家分別距離影院1200米和2000米,兩人分別從家中同時出發(fā),已知甲和乙的速度比是,結(jié)果甲比乙提前4分鐘到達影院.
(1)求甲、乙兩人的速度?
(2)在看電影時,甲突然接到家長電話讓其15分鐘內(nèi)趕回家,時間緊迫改變速度,比來時每分鐘多走25米,甲是否能按要求時間到家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃用這兩種原料全部生產(chǎn)A,B兩種產(chǎn)品共50件,生產(chǎn)A,B兩種產(chǎn)品與所需原料情況如下表所示:
原料 型號 | 甲種原料(千克) | 乙種原料(千克) |
A產(chǎn)品(每件) | 9 | 3 |
B產(chǎn)品(每件) | 4 | 10 |
(1)該工廠生產(chǎn)A,B兩種產(chǎn)品有哪幾種方案?
(2)如果該工廠生產(chǎn)一件A產(chǎn)品可獲利80元,生產(chǎn)一件B產(chǎn)品可獲利120元,那么該工廠應(yīng)該怎樣安排生產(chǎn)可獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級學(xué)生全部參加“初二生物地理會考”,從中抽取了部分學(xué)生的生物考試成績,將他們的成績進行統(tǒng)計后分為A,B,C,D四等,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題
(1)抽取了______名學(xué)生成績;(2)請把條形統(tǒng)計圖補充完整;
(3)扇形統(tǒng)計圖中等級D所在的扇形的圓心角度數(shù)是______;
(4)若A,B,C代表合格,該校初二年級有300名學(xué)生,求全年級生物合格的學(xué)生共約多少人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標系中,三角形ABC的頂點都在網(wǎng)格點上,其中A(2,), B(4,3), C(1,2).
(1)將三角形ABC先向左平移2個單位長度,再向上平移1個單位長度,得到三角形,則三角形的三個頂點坐標。( ),( ),( ).
(2)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=2cm,AE=1cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:
(1)求A,B兩種型號的凈水器的銷售單價;
(2)若電器公司準備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?
(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com