【題目】從三角形(不是等腰三角形)一個頂點引出一條射線于對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
【答案】(1)證明見解析;(2)∠ACB=96°或114°;(3).
【解析】試題分析:(1)根據(jù)完美分割線的定義只要證明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.
(2)分三種情形討論即可①如圖2,當(dāng)AD=CD時,②如圖3中,當(dāng)AD=AC時,③如圖4中,當(dāng)AC=CD時,分別求出∠ACB即可.
(3)設(shè)BD=x,利用△BCD∽△BAC,得,列出方程即可解決問題.
(1)如圖1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD為等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割線.
(2)①當(dāng)AD=CD時,如圖2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.
②當(dāng)AD=AC時,如圖3中,∠ACD=∠ADC=(180°-48°)÷2=66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.
③當(dāng)AC=CD時,如圖4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍棄,∴∠ACB=96°或114°.
(3)由已知AC=AD=2,∵△BCD∽△BAC,∴ 設(shè)BD=x,∴),∵x>0,∴x=,∵△BCD∽△BAC,∴=,∴CD=×2=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,“在初中數(shù)學(xué)教學(xué)候總使用計算器是否直接影響學(xué)生計算能力的發(fā)展”這一問題受到了廣泛關(guān)注,為此,某校隨機調(diào)查了n名學(xué)生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結(jié)果 繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
n名學(xué)生對使用計算器影響計算能力的發(fā)展看法人數(shù)統(tǒng)計表
看法 | 沒有影響 | 影響不大 | 影響很大 |
學(xué)生人數(shù)(人) | 40 | 60 | m |
(1)求n的值;
(2)統(tǒng)計表中的m= ;
(3)估計該校1800名學(xué)生中認(rèn)為“影響很大”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,∠BAD=120°,以點A為頂點的一個60°的角∠EAF繞點A旋轉(zhuǎn),∠EAF的兩邊分別交BC,CD于點E,F(xiàn),且E,F(xiàn)不與B,C,D重合,連接EF.
(1)求證:BE=CF.
(2)在∠EAF繞點A旋轉(zhuǎn)的過程中,四邊形 AECF的面積是否發(fā)生變化?如果不變,求出其定值;如果變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD的平分線與∠ADC的平分線相交于點E,∠ABC的平分線與∠BCD的平分線相交于點F,則∠E與∠F的數(shù)量關(guān)系是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果A、B、C三點在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為AB,BC的中點,那么M,N兩點之間的距離為( )
A. 5 cm B. 1 cm C. 5或1 cm D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線:與軸相交于B,與軸相交于點A.直線:經(jīng)過原點,并且與直線相交于C點.
(1)求ΔOBC的面積;
(2)如圖2,在軸上有一動點E,連接CE.問CE+BE是否有最小值,如果有,求出相應(yīng)的點E的坐標(biāo)及CE+BE的最小值;如果沒有,請說明理由;
(3)如圖3,在(2)的條件下,以CE為一邊作等邊ΔCDE,D點正好落在軸上.將ΔDCE繞點D順時針旋轉(zhuǎn),旋轉(zhuǎn)角度為(0°≤≤360),記旋轉(zhuǎn)后的三角形為ΔDCE′,點C,E的對稱點分別為C′,E′.在旋轉(zhuǎn)過程中,設(shè)C′E′所在的直線與直線相交于點M,與軸正半軸相交于點N.當(dāng)ΔOMN為等腰三角形時,求線段ON的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片折疊,使點C與點A重合,折痕為EF,點D的對應(yīng)點為G,連接DG,則圖中陰影部分面積是( )
A. 5 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時,水費按a元/米3收費;每戶每月用水量超過6米3時,不超過的部分每立方米仍按a元收費,超過的部分按c元/米3收費,該市某用戶今年3、4月份的用水量和水費如下表所示:
月份 | 用水量(m3) | 收費(元) |
3 | 5 | 7.5 |
4 | 9 | 27 |
(1)求a、c的值,并寫出每月用水量不超過6米3和超過6米3時,水費與用水量之間的關(guān)系式;
(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長均為2,且AC與DE在同一直線上,開始時點C與點D重合,讓△ABC沿這條直線向右平移,直到點A與點E重合為止.設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com