如圖1:直線y= kx+4k(k≠0)交x軸于點A,交y軸于點C,點M(2,m)為直線AC上一點,過點M的直線BD交x軸于點B,交y軸于點D.

(1)求的值(用含有k的式子表示.);

(2)若SBOM =3SDOM,且k為方程(k+7)(k+5)-(k+6)(k+5=的根,求直線BD的解析式.

(3)如圖2,在(2)的條件下,P為線段OD之間的動點(點P不與點O和點D重合),OE

上AP于E,,DF上AP于F,下列兩個結(jié)論:①值不變;②值不變,請你判斷其中哪一個結(jié)論是正確的,并說明理由并求出其值,

 

【答案】

 

(1)

(2)

(3)

【解析】(1)解:∵A(-4,0)  C(0,)                             ……2分

       由圖象可知

∴OA=4 ,  OC=                                              ……3分

                                              ……4分

(2)解: ∵

          解得:                                             ……5分

∴直線AC的解析式為:

∴M(2,-3)                                                   ……6分

過點M作ME⊥軸于E

∴ME=2

     又∵   

     ∴

     ∴                                               

     ∴B(8,0)                                                   ……7分    

     設(shè)直線BD的解析式為:

     則有         

解得:……9分

     ∴直線BD的解析式為:                             ……8分

(3)解:②值不變.理由如下:

過點O作OH⊥DF交DF的延長線于H,連接EH                       ……9分

∵DF⊥AP

∴∠DFP=∠AOP=90º

又∠DPF=∠APO

∴∠ODH=∠OAE

∵點D在直線

∴D(0,-4)

∴OA=OD=4

又∵∠OHD=∠OEA=90 º

∴△ODH≌⊿OAE(AAS)                                           ……10分

∴AE=DH ,  OE=OH , ∠HOD=∠EOA

∴∠EOH=∠HOD+∠EOD=∠EOA+∠EOD=90º                          ……11分

∴∠OEH=45º

∴∠HEF=45º=∠FHE

∴FE=FH

∴等腰Rt⊿OH≌等腰Rt⊿FHE

∴OE=OH=FE=HF

                                       ……12分

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1,在平面直角坐標中,直角梯形OABC的頂點A的坐標為(4,0),直線y=-
14
x+3經(jīng)過頂點B,與y軸交于頂點C,AB∥OC.
(1)求頂點B的坐標;
(2)如圖2,直線l經(jīng)過點C,與直線AB交于點M,點O?為點O關(guān)于直線l的對稱點,連接CO?,并延長交直線AB于第一象限的點D,當CD=5時,求直線l的解析式;
(3)在(2)的條件下,點P在直線l上運動,點Q在直線OD上運動,以P、Q、B、C為頂點的四邊形能否成為平行四邊形?若能,求出點P的坐標;若不能,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,該直線是某個一次函數(shù)的圖象,則此函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,在直線l上取A,B兩點,使AB=10厘米,若在l上再取一點C,使AC=2厘米,M,N分別是AB,AC中點.求MN的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,兩直線y1=ax+3與y2=
14
x相交于P點,當y2<y1≤3時,x的取值范圍為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•南崗區(qū)一模)如圖1,直線y=-kx+6k(k>0)與x軸、y軸分別相交于點A、B,且△AOB的面積是24.
(1)求直線AB的解析式;
(2)如圖2,點P從點O出發(fā),以每秒2個單位的速度沿折線OA-AB運動;同時點E從點O出發(fā),以每秒1個單位的速度沿y軸正半軸運動,過點E作與x軸平行的直線l,與線段AB相交于點F,當點P與點F重合時,點P、E均停止運動.連接PE、PF,設(shè)△PEF的面積為S,點P運動的時間為t秒,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,過P作x軸的垂線,與直線l相交于點M,連接AM,當tan∠MAB=
12
時,求t值.

查看答案和解析>>

同步練習冊答案