精英家教網 > 初中數學 > 題目詳情
如圖,已知兩點A(2,0),B(0,4),且∠1=∠2,則點C的坐標是   
【答案】分析:根據已知條件,易證△AOC∽△BOA.運用相似三角形的性質求OC即得解.
解答:解:∵∠1=∠2,∠BOA=∠AOC
∴△AOC∽△BOA

∴OC=1
∴點C的坐標是(0,1).
點評:求點的坐標的問題可以轉化為求線段的長度的問題,本題利用了三角形的相似的性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知兩點A(2,0),B(0,4),且∠1=∠2,則點C的坐標是
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知兩點A(-8,0),C(0,4),以AB為直徑的半圓與y軸正半軸交于點C.
(1)求過A、C兩點的直線的解析式和經過A、B、C三點的拋物線的解析式;
(2)若點D是(1)中拋物線的頂點,求△ACD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知兩點A(2,0),B(0,4),且sin∠1=cos∠2,則點C的坐標為
(0,1)
(0,1)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知兩點A(6,3),B(6,0),以原點O為位似中心,相似比為1:3把線段AB縮小,則點A的對應點坐標是
(2,1)或(-2,-1)
(2,1)或(-2,-1)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知兩點P、Q在銳角∠AOB內,分別在OA、OB上求作點M、N,使PM+MN+NQ最短.

查看答案和解析>>

同步練習冊答案