如圖,四邊形ABCD和四邊形AEFG均為正方形,連接BG與DE相交于點(diǎn)H.
(1)證明:△ABG≌△ADE;
(2)試猜想∠BHD的度數(shù),并說(shuō)明理由.

(1)證明:∵四邊形ABCD和四邊形AEFG是正方形
∠GAE=∠BAD=90°,∠GAE+∠EAB=∠BAD+EAB,AG=AE AB=AD
∴∠GAB=∠EAD.
在△ABG和△ADE中,
,
∴△ABG≌△ADE(SAS);

(2)答:∠BHD=90°
解:∵△ABG≌△ADE,
∴∠1=∠2.
∵BAD=90°,
∴∠2+∠4=90°.
∵∠3=∠4,
∴∠1+∠3=90°,
∴∠BHD=90°.
分析:(1)由正方形的性質(zhì)就可以得出∠GAE=∠BAD=90°,∠GAE+∠EAB=∠BAD+EAB,由全等三角形的判定方法就可以得出結(jié)論.
(2)由△ABG≌△ADE可以得出∠1=∠2,由∠BAD=90°可以得出∠2+∠4=90°,就可以得出∠1+∠3=90°而得出結(jié)論.
點(diǎn)評(píng):本題考查了正方形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,直角三角形的性質(zhì)的運(yùn)用,解答時(shí)求證△ABG≌△ADE是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案