如圖所示,在平面直角坐標(biāo)系內(nèi)點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(4,8),(0,5),過點(diǎn)A作AB⊥x軸于點(diǎn)B,過OB上的動(dòng)點(diǎn)D作直線y=kx+b平行于AC,與AB相交于點(diǎn)E,連接CD,過點(diǎn)E作EFCD交AC于點(diǎn)F.
(1)求經(jīng)過A、C兩點(diǎn)的直線的解析式;
(2)當(dāng)點(diǎn)D在OB上移動(dòng)時(shí),能否使四邊形CDEF為矩形?若能,求出此時(shí)k,b的值;若不能,請(qǐng)說明理由.
(1)設(shè)直線AC的解析式為y=kx+b,
∵A(4,8),C(0,5),
4k+b=8
b=5
,
解得
k=
3
4
b=5
,
∴直線AC的解析式為:y=
3
4
x+5;

(2)∵DEAC,直線AC的解析式為:y=
3
4
x+5,
∴可設(shè)直線DE的解析式為:y=
3
4
x+n.
設(shè)直線DE與y軸交于點(diǎn)M,則M(0,n),D(-
4
3
n,0).
如果四邊形CDEF為矩形,則DE⊥CD,
∴∠OCD=∠ODM=90°-∠ODC,
又∵∠COD=∠DOM,
∴△COD△DOM,
∴OC:OD=OD:OM,
∴OD2=OC•OM,
∴(-
4
3
n)2=5|n|,
∵n<0,解得n=-
45
16
,
即直線DE的解析式為:y=
3
4
x-
45
16
,
故能使四邊形CDEF為矩形,此時(shí)k=
3
4
,b=-
45
16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示是溫度計(jì)的示意圖,左邊的刻度表示攝氏溫度,右邊的刻度表示華氏溫度,華氏(℉)溫度y與攝氏(℃)溫度x之間的函數(shù)解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

今年以來,廣東大部分地區(qū)的電力緊缺,電力公司為鼓勵(lì)市民節(jié)約用電,采取按月用電量分段收費(fèi)辦法,若某戶居民每月應(yīng)交電費(fèi)y(元)與用電量x(度)的函數(shù)圖象是一條折線(如圖所示),根據(jù)圖象解下列問題:
(1)分別寫出當(dāng)0≤x≤100和x>100時(shí),y與x的函數(shù)關(guān)系式;
(2)利用函數(shù)關(guān)系式,說明電力公司采取的收費(fèi)標(biāo)準(zhǔn);
(3)若該用戶某月用電62度,則應(yīng)繳費(fèi)多少元若該用戶某月繳費(fèi)105元時(shí),則該用戶該月用了多少度電?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀下列材料,再解答后面的問題.
材料:密碼學(xué)是一門很神秘、很有趣的學(xué)問,在密碼學(xué)中,直接可以看到的信息稱為明碼,加密后的信息稱為密碼,任何密碼只要找到了明碼與密碼的對(duì)應(yīng)關(guān)系--密鑰,就可以破譯它.
密碼學(xué)與數(shù)學(xué)是有關(guān)系的.為此,八年一班數(shù)學(xué)興趣小組經(jīng)過研究實(shí)驗(yàn),用所學(xué)的一次函數(shù)知識(shí)制作了一種密鑰的編制程序.他們首先設(shè)計(jì)了一個(gè)“字母--明碼對(duì)照表”:
字母ABCDEFGHIJKLM
明碼12345678910111213
字母NOPQRSTUVWXYZ
明碼14151617181920212213242526
例如,以y=3x+13為密鑰,將“自信”二字進(jìn)行加密轉(zhuǎn)換后得到下表:
漢字
拼音ZIXIN
明碼:x26924914
密鑰:y=
密碼:y9140
因此,“自”字加密轉(zhuǎn)換后的結(jié)果是“9140”.
問題:
(1)請(qǐng)你求出當(dāng)密鑰為y=3x+13時(shí),“信”字經(jīng)加密轉(zhuǎn)換后的結(jié)果;
(2)為了提高密碼的保密程度,需要頻繁地更換密鑰.若“自信”二字用新的密鑰加密轉(zhuǎn)換后得到下表:
漢字
拼音ZIXIN
明碼:x26924914
密鑰:y=
密碼:y7036
請(qǐng)求出這個(gè)新的密鑰,并直接寫出“信”字用新的密鑰加密轉(zhuǎn)換后的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某個(gè)水池有2個(gè)進(jìn)水口,1個(gè)出水口.每個(gè)進(jìn)水口的進(jìn)水量y(m3)與時(shí)間x(h)的關(guān)系如甲圖所示,每個(gè)出水口的出水量(m3)與時(shí)間(h)的關(guān)系如下表所示.某天0到4時(shí),該水池的蓄水量V(m3)與時(shí)間t(時(shí))的關(guān)系如乙圖所示.
時(shí)間(h)1234
出水量(m32468
(1)觀察甲圖,寫出每個(gè)進(jìn)水口的進(jìn)水量y(m3)與時(shí)間x(h)的函數(shù)關(guān)系式:______;
(2)觀察乙圖,判斷下列說法是否正確(對(duì)的打“√”,錯(cuò)的打“×”);
①0時(shí)到2時(shí),兩個(gè)進(jìn)水口開放,出水口關(guān)閉;(√)
②2時(shí)到4時(shí),出水口和兩個(gè)進(jìn)水口都開放或都關(guān)閉.(√)
(3)從4時(shí)起,同時(shí)打開出水口和一個(gè)進(jìn)水口,何時(shí)刻該水池的蓄水量為2m3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知等腰三角形的周長為20cm,試求出底邊長y(cm)表示成腰長x(cm)的函數(shù)關(guān)系式,并求其自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)P(x,y)是第一象限直線y=-x+6上的點(diǎn),點(diǎn)A(5,0),O是坐標(biāo)原點(diǎn),△PAO的面積為S.
(1)求S與x的函數(shù)關(guān)系式;
(2)當(dāng)S=10時(shí),求tan∠POA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)y=-
3
4
x+6
的圖象與坐標(biāo)軸交于A、B點(diǎn)(如圖),AE平分∠BAO,交x軸于點(diǎn)E.

(1)求點(diǎn)B的坐標(biāo);
(2)求直線AE的表達(dá)式;
(3)過點(diǎn)B作BF⊥AE,垂足為F,連接OF,試判斷△OFB的形狀,并求△OFB的面積.
(4)若將已知條件“AE平分∠BAO,交x軸于點(diǎn)E”改變?yōu)椤包c(diǎn)E是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)O、B重合)”,過點(diǎn)B作BF⊥AE,垂足為F.設(shè)OE=x,BF=y,試求y與x之間的函數(shù)關(guān)系式,并寫出函數(shù)的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

“五一黃金周”的某一天,小明全家上午8時(shí)自駕小汽車從家里出發(fā),到距離180千米的某著名旅游景點(diǎn)游玩.該小汽車離家的距離s(千米)與時(shí)間t(時(shí))的關(guān)系可以用圖中的曲線表示.根據(jù)圖象提供的有關(guān)信息,解答下列問題:
(1)小明全家在旅游景點(diǎn)游玩了多少小時(shí)?
(2)求出返程途中,s(千米)與時(shí)間t(時(shí))的函數(shù)關(guān)系,并回答小明全家到家是什么時(shí)間?
(3)若出發(fā)時(shí)汽車油箱中存油15升,該汽車的油箱總?cè)萘繛?5升,汽車每行駛1千米耗油
1
9
升.請(qǐng)你就“何時(shí)加油和加油量”給小明全家提出一個(gè)合理化的建議.(加油所用時(shí)間忽略不計(jì))

查看答案和解析>>

同步練習(xí)冊(cè)答案