如圖,在平面直角坐標(biāo)系中,點(diǎn)P(x,y)是第一象限直線y=-x+6上的點(diǎn),點(diǎn)A(5,0),O是坐標(biāo)原點(diǎn),△PAO的面積為S.
(1)求S與x的函數(shù)關(guān)系式;
(2)當(dāng)S=10時(shí),求tan∠POA的值.
(1)因?yàn)辄c(diǎn)P在第一象限直線y=-x+6上,故△POA的高為y,
所以S=
1
2
×5×(-x+6)=-
5
2
x+15.

(2)設(shè)點(diǎn)P(x,y),
當(dāng)S=10時(shí),S=
1
2
OA•y=10,
1
2
×5y=10,
解得y=4,
所以,-x+6=4,
解得x=2,
所以,tan∠POA=
y
x
=
4
2
=2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線y=-
4
3
x+8與x軸、y軸分別相交于點(diǎn)A、B,設(shè)M是OB上一點(diǎn),若將△ABM沿AM折疊,使點(diǎn)B恰好落在x軸上的點(diǎn)B′處.求:
(1)點(diǎn)B′的坐標(biāo);
(2)直線AM所對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系內(nèi)點(diǎn)A和點(diǎn)C的坐標(biāo)分別為(4,8),(0,5),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,過(guò)OB上的動(dòng)點(diǎn)D作直線y=kx+b平行于AC,與AB相交于點(diǎn)E,連接CD,過(guò)點(diǎn)E作EFCD交AC于點(diǎn)F.
(1)求經(jīng)過(guò)A、C兩點(diǎn)的直線的解析式;
(2)當(dāng)點(diǎn)D在OB上移動(dòng)時(shí),能否使四邊形CDEF為矩形?若能,求出此時(shí)k,b的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若y+b與x+a(a、b是常數(shù))成正比例,當(dāng)x=3時(shí),y=5;當(dāng)x=2時(shí),y=2,則y與x之問(wèn)的函數(shù)關(guān)系式為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一水庫(kù)的水位在最近5小時(shí)之內(nèi)持續(xù)上漲,下表記錄了這5個(gè)小時(shí)水位高度.
t/時(shí)012345
y/米1010.0510.1010.1510.2010.25
(1)由記錄表推出這5個(gè)小時(shí)中水位高度y(單位:米)隨時(shí)間t(單位:時(shí))變化的函數(shù)解析式,并在圖中畫出該函數(shù)圖象;
(2)據(jù)估計(jì)按這種上漲規(guī)律還會(huì)持續(xù)若干個(gè)小時(shí),請(qǐng)預(yù)測(cè)再過(guò)多少小時(shí)水位高度將達(dá)到10.35米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B是直線y=2x-2與x軸、y軸的交點(diǎn),C在A正右邊,D在B正上方,CA=2,DB=3,求C、D所在直線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn).設(shè)坐標(biāo)軸的單位長(zhǎng)度為1厘米,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1厘米/秒,且整點(diǎn)P作向上或向右運(yùn)動(dòng)(如圖所示).運(yùn)動(dòng)時(shí)間(秒)與整點(diǎn)(個(gè))的關(guān)系如下表:
整點(diǎn)P從原點(diǎn)O出發(fā)的時(shí)間(秒)可以得到的整點(diǎn)P的坐標(biāo)可以得到整點(diǎn)P的個(gè)數(shù)
1(0,1),(1,0)2
2(0,2),(1,1),(2,0)3
3(0,3),(1,2),(2,1),(3,0)4
根據(jù)上表中的規(guī)律,回答下列問(wèn)題:
(1)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4秒時(shí),可以得到的整點(diǎn)P的個(gè)數(shù)為_(kāi)_____個(gè);
(2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8秒時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連接這些整點(diǎn);
(3)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)______秒時(shí),可到達(dá)整點(diǎn)(16,4)的位置;
(4)當(dāng)整點(diǎn)P(x,y)從點(diǎn)O出發(fā)30秒時(shí),整點(diǎn)P(x,y)恰好在直線y=2x-6上,求整點(diǎn)P(x,y)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

農(nóng)歷五月初五,汨羅江龍舟賽渡.甲、乙兩隊(duì)在比賽中龍舟行駛路程y(m)和行駛時(shí)間t(s)之間的函數(shù)關(guān)系如圖所示.根據(jù)所給圖象,解答下列問(wèn)題:
(1)請(qǐng)分別求出甲、乙兩隊(duì)行駛路程y與時(shí)間t(t≥0)之間的函數(shù)關(guān)系;
(2)出發(fā)后,t為何值時(shí),甲、乙兩隊(duì)行駛的路程相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)P在第一象限內(nèi)的直線y=-x+4上.設(shè)點(diǎn)P的坐標(biāo)為(x,y).
(1)在所給的坐標(biāo)系中畫出直線y=-x+4;
(2)求△POA的面積S與變量x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)當(dāng)S=
9
2
時(shí),求點(diǎn)P的坐標(biāo),畫出此時(shí)的△POA,并用尺規(guī)作圖法,作出其外接圓(保留作圖痕跡,不寫作法).

查看答案和解析>>

同步練習(xí)冊(cè)答案