【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點(diǎn)P是⊙O外一點(diǎn),連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線(xiàn);
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)BC=2.
【解析】試題分析:(1)連接OB,由圓周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,證出∠PBA+∠OBA=90°,即可得出結(jié)論;
(2)證明△ABC∽△PBO,得出對(duì)應(yīng)邊成比例,即可求出BC的長(zhǎng).
試題解析:(1)證明:連接OB,如圖所示:
∵AC是⊙O的直徑,
∴∠ABC=90°,
∴∠C+∠BAC=90°,
∵OA=OB,
∴∠BAC=∠OBA,
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,
即PB⊥OB,
∴PB是⊙O的切線(xiàn);
(2)解:∵⊙O的半徑為2,
∴OB=2,AC=4,
∵OP∥BC,
∴∠C=∠BOP,
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴,
即,
∴BC=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(在矩形ABCD中,AB=4,BC=8,經(jīng)過(guò)對(duì)角線(xiàn)交點(diǎn)O的直線(xiàn)EF繞點(diǎn)O旋轉(zhuǎn),分別交AD、BC于點(diǎn)E、F,連接AF、CE.
(1)如圖(1),依據(jù)下列條件在普通四邊形、梯形、普通平行四邊形、矩菱形或正方形中選擇填空:旋轉(zhuǎn)過(guò)程中四邊形AFCE始終為;
當(dāng)點(diǎn)E為AD的中點(diǎn)時(shí)四邊形AFCE為;
當(dāng)EF⊥AC時(shí)四邊形AFCE為;
(2)如圖(1),當(dāng)EF⊥AC時(shí),求AF的長(zhǎng);
(3)如圖(2),在(2)的基礎(chǔ)上,若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿A→F→B→A運(yùn)動(dòng)一周停止,速度為每秒5厘米;同時(shí)點(diǎn)Q從C點(diǎn)出發(fā),沿C→D→E→C運(yùn)動(dòng)一周停止,速度為每秒4厘米,在P、Q運(yùn)動(dòng)過(guò)程中,第幾秒時(shí),四邊形APCQ是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式計(jì)算正確的是( 。
A. 3ab﹣2ab=ab B. 5y2﹣4y2=1 C. 2a+3b=5ab D. 3+x=3x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,
(1)在圖中作出△ABC的內(nèi)角平分線(xiàn)AD.(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)證明過(guò)程)
(2)若∠BAC = 2∠C,在已作出的圖形中,△ ∽△
(3)畫(huà)出△ABC的高AE(使用三角板畫(huà)出即可),若∠B=α,∠C=β,那么∠DAE= (請(qǐng)用含α、β的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在-1,0,-3,5這四個(gè)數(shù)中,最小的數(shù)是( )
A. -1 B. 0 C. -3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙,丙三家超市為了促銷(xiāo)一種定價(jià)均為m元的商品,甲超市連續(xù)兩次降價(jià)20%,乙超市一次性降價(jià)40%,丙超市第一次降價(jià)30%,第二次降價(jià)10%,此時(shí)顧客要購(gòu)買(mǎi)這種商品最劃算應(yīng)到的超市是( )
A.甲
B.乙
C.丙
D.乙或丙
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com