當(dāng)x=
3
-1
2
時(shí),求代數(shù)式(
x2-x+2
x2-1
-
1
x-1
)÷(1-
1
x-1
)
的值.
分析:本題中直接代數(shù)求值是非常麻煩的.關(guān)鍵是正確進(jìn)行分式的通分、約分,并準(zhǔn)確代值計(jì)算.
解答:解:原式=(
x2-x+2
x2-1
-
1
x-1
)×
x-1
x-2
=
(x-1)2
x+1)(x-2)

當(dāng)x=
3
-1
2
時(shí),原式=-
24
3
+45
22
點(diǎn)評:本題是分式的化簡求值問題,有一定難度,需要細(xì)心,耐心.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,AB=4,AD=5,P是射線BC上的一個(gè)動(dòng)點(diǎn),作PE⊥AP,PE交射線DC于點(diǎn)E,射線AE交射線BC于點(diǎn)F,設(shè)BP=x,CE=y.
(1)如圖,當(dāng)點(diǎn)P在邊BC上時(shí)(點(diǎn)P與點(diǎn)B、C都不重合),求y關(guān)于x的函數(shù)解析式,并寫精英家教網(wǎng)出它的定義域;
(2)當(dāng)x=3時(shí),求CF的長;
(3)當(dāng)tan∠PAE=
12
時(shí),求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,2),以O(shè)A為直徑作圓B.若點(diǎn)D是x軸上的一動(dòng)點(diǎn),連接AD交圓B于點(diǎn)C.
(1)當(dāng)tan∠DAO=
12
時(shí),求直線BC的解析式;
(2)過點(diǎn)D作DP∥y軸與過B、C兩點(diǎn)的直線交于點(diǎn)P,請任意求出三個(gè)符合條件的點(diǎn)P的坐標(biāo),并確定圖象經(jīng)過這三個(gè)點(diǎn)的二次函數(shù)的解析式;
(3)若點(diǎn)P滿足(2)中的條件,點(diǎn)M的坐標(biāo)為(-3,3),求線段PM與PB的和的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

Rt△ABC在直角坐標(biāo)系內(nèi)的位置如圖1所示,反比例函數(shù)y=
k
x
(k≠0)
在第一象限內(nèi)的圖象與BC邊交于點(diǎn)D(4,m),與AB邊交于點(diǎn)E(2,n),△BDE的面積為2.
(1)求m與n的數(shù)量關(guān)系;
(2)當(dāng)tan∠A=
1
2
時(shí),求反比例函數(shù)的解析式和直線AB的表達(dá)式;
(3)設(shè)直線AB與y軸交于點(diǎn)F,點(diǎn)P在射線FD上,在(2)的條件下,如果△AEO與△EFP相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,有一根直尺的短邊長為6cm,長邊長為12cm,還有一塊銳角為45°的直角三角形紙板,它的斜邊為12cm,如圖甲,將直尺的短邊DE與直角三角形紙板的斜邊放置在同一直線上,且D與B重合.將Rt△ABC沿AB方向平移(如圖乙),設(shè)平移的長度為x cm(0≤x≤12),直尺和三角形紙板的重疊部分(圖中的陰影部分)的面積為S cm2
(1)寫出當(dāng)x=6時(shí),S=
18cm2
18cm2
;
(2)當(dāng)6≤x≤12時(shí),求S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)x-
1
x
=
1
2
時(shí),求4(x-
1
x
)2+x+3-
1
x
的值.

查看答案和解析>>

同步練習(xí)冊答案