【題目】閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值. 解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0
∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根據(jù)你的觀察,探究下面的問(wèn)題:
(1)a2+b2﹣4a+4=0,則a= . b= .
(2)已知x2+2y2﹣2xy+6y+9=0,求xy的值.
(3)已知△ABC的三邊長(zhǎng)a、b、c都是正整數(shù),且滿足2a2+b2﹣4a﹣6b+11=0,求△ABC的周長(zhǎng).
【答案】
(1)2;0
(2)解:∵x2+2y2﹣2xy+6y+9=0,
∴x2+y2﹣2xy+y2+6y+9=0,
即(x﹣y)2+(y+3)2=0,
則x﹣y=0,y+3=0,
解得:x=y=﹣3,
∴xy=(﹣3)﹣3=﹣ ;
(3)解:∵2a2+b2﹣4a﹣6b+11=0,
∴2a2﹣4a+2+b2﹣6b+9=0,
∴2(a﹣1)2+(b﹣3)2=0,
則a﹣1=0,b﹣3=0,
解得:a=1,b=3,
由三角形三邊關(guān)系可知,三角形三邊分別為1、3、3,
則△ABC的周長(zhǎng)為1+3+3=7.
【解析】解:(1)已知等式整理得:(a﹣2)2+b2=0, 解得:a=2,b=0;
所以答案是:2;0;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解因式分解的應(yīng)用的相關(guān)知識(shí),掌握因式分解是整式乘法的逆向變形,可以應(yīng)用與數(shù)字計(jì)算、求值、整除性問(wèn)題、判斷三角形的形狀、解方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)中,為了書寫簡(jiǎn)便,我們通常記 k=1+2+3+…+(n﹣1)+n,如 (x+k),=(x+1)+(x+2)+(x+3)+(x+4),則化簡(jiǎn) [(x﹣k)(x﹣k﹣1)]的結(jié)果是( )
A.3x2﹣15x+20
B.3x2﹣9x+8
C.3x2﹣6x﹣20
D.3x2﹣12x﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】?jī)蓚(gè)大小不同的等腰直角三角形三角板如圖①所示放置,圖②是由它抽象出的幾何圖形,B,C,E在同一條直線上,連接DC.
求證:DC⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的兩條邊長(zhǎng)分別為3和5,且第三邊的長(zhǎng)c為整數(shù),則c的取值可以為( )
A. 7 B. 11 C. 1 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:∠MON=80°,OE平分∠MON,點(diǎn)A、B、C分別是射線OM、OE、ON上的動(dòng)點(diǎn)(A、B、C不與點(diǎn)O 重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OAC=x°.
(1)如圖1,若AB∥ON,則∠ABO的度數(shù)是;
(2)如圖2,當(dāng)∠BAD=∠ABD時(shí),試求x的值(要說(shuō)明理由);
(3)如圖3,若AB⊥OM,則是否存在這樣的x的值,使得△ADB中有兩個(gè)相等的角?若存在,直接寫出x的值;若不存在,說(shuō)明理由.(自己畫圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】與﹣2x2y合并同類項(xiàng)后得到5x2y的是( )
A.﹣3x2y
B.3x2y
C.7yx2
D.7xy2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用計(jì)算器計(jì)算cos44°的結(jié)果(精確到0.01)是( 。
A.0.90
B.0.72
C.0.69
D.0.66
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com