如圖,△ABC中,∠A=96°,延長BC到D,∠ABC與∠ACD的平分線相交于A1點,則∠A1的大小是________,∠A1BC與∠A1CD的平分線相交于A2點,依此類推,∠A2012BC與∠A2012CD的平分線相交于∠A2012的大小是________.

48°    
分析:利用角平分先性質(zhì)、三角形外角性質(zhì),易證∠A1=∠A,進(jìn)而可求∠A1,由于∠A1=∠A,∠A2=∠A1=∠A,…,以此類推可知∠A2012=∠A=°.
解答:∵A1B平分∠ABC,A1C平分∠ACD,
∴∠A1BC=∠ABC,∠A1CA=∠ACD,
∵∠A1CD=∠A1+∠A1BC,
∠ACD=∠A1+∠ABC,
∴∠A1=(∠ACD-∠ABC),
∵∠A+∠ABC=∠ACD,
∴∠A=∠ACD-∠ABC,
∴∠A1=∠A,
∴∠A1=×96°=48°,
∵∠A1=∠A,∠A2=∠A1=∠A,

以此類推∠A2012=∠A=°.
點評:本題考查了角平分線性質(zhì)、三角形外角性質(zhì),解題的關(guān)鍵是推導(dǎo)出∠A1=∠A,并能找出規(guī)律.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案