如圖,矩形OABC的邊OA、OC在坐標軸上,經(jīng)過點B的雙曲線的解析式為y=
k
x
(x
<0),M為OC上一點,且CM=2OM,N為BC的中點,BM與AN交于點E,若四邊形EMCN的面積為
13
4
,則k=
 

精英家教網(wǎng)
分析:此題可先設出矩形ABCO的面積為S,再將陰影面積進行分割求得陰影面積與S的關系求得S的值,則|k|=S且k<0可求得k的值.
解答:精英家教網(wǎng)解:設矩形ABCO的面積為S,過點N作AB的平行線交BM于點F.
由于CM=2OM,N為BC的中點,則NF=
1
2
CM=
1
2
×
2
3
AB=
1
3
AB,
所以
NE
AN
=
1
4
,S△BEN=
1
4
S△ABN=
1
16
S矩形ABCO=
1
16
S.
S四邊形EMCN=S△BCM-S△BNE=
1
3
S-
1
16
S=
13
4

解得:S=12,
則|k|=12,又由于k<0,所以k=-12.
故答案為:-12.
點評:本題借助圖形考查了反比例函數(shù)系數(shù)k的幾何意義,由陰影圖形的面積得到|k|的值是本題的解題思路,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點0、B的坐標分別是O(0,0)、B(8,4),頂點A在x軸上,頂點C在y軸上,把△OAB沿OB翻折,使點A落在點D的位置,BD與OA交于E.
①求證:OE=EB;
②求OE、DE的長度;
③求直線BD的解析.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點D,與x軸相交于另外一點E,若點M是x軸上的點,N是y軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樊城區(qū)模擬)已知如圖,矩形OABC的長OA=2
3
,寬OC=2,將△AOC沿AC翻折得△AFC.
(1)求點F的坐標;
(2)求過A、F、C三點的拋物線解析式;
(3)在拋物線上是否存在一點P,使得△ACP為以A為直角頂點的直角三角形?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,矩形OABC的頂點坐標分別是(0,0),(4,0),(4,1),(0,1),在矩形OABC的內部任取一點(x,y),則x<y的概率是
 

查看答案和解析>>

同步練習冊答案