如圖,已知直線數(shù)學(xué)公式與雙曲線y=數(shù)學(xué)公式相交于C、D兩點(diǎn),與x軸,y軸分別相交于A、B兩點(diǎn),若CD=3,則k=________.


分析:將和y=組成方程組,分別建立關(guān)于x和y的一元二次方程,求出C、D的水平距離和垂直距離表達(dá)式,利用勾股定理建立關(guān)于k的方程,解答即可.
解答:將和y=組成方程組得,,
整理得,=,
即3x2+12x-4k=0,
則C、D的水平距離為|x1-x2|===;
和y=組成方程組得,,
整理得4y2=3k+12y,
即4y2-12y-3k=0,
則C、D的垂直距離為|y1-y2|===;
由勾股定理得,16+k+9+3k=32;
解得,k=-
故答案為-
點(diǎn)評(píng):本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,將此題轉(zhuǎn)化為水平距離和垂直距離是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線數(shù)學(xué)公式與雙曲線數(shù)學(xué)公式(k>0)交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.
(1)求k的值;
(2)判斷點(diǎn)(-2,-4)是否在雙曲線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(貴州遵義卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,已知直線與雙曲線(k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為,C為雙曲線(k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6,則點(diǎn)C的坐標(biāo)為    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第23章《二次函數(shù)與反比例函數(shù)》?碱}集(40):23.6 反比例函數(shù)(解析版) 題型:解答題

如圖,已知直線與雙曲線(k>0)交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.
(1)求k的值;
(2)若雙曲線(k>0)上一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省襄陽(yáng)市谷城縣中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線與雙曲線(k>0)交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4.
(1)求k的值;
(2)若雙曲線(k>0)上一點(diǎn)C的縱坐標(biāo)為8,求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2014屆浙江臺(tái)州八年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線與雙曲線交于A、B兩點(diǎn),且點(diǎn)的橫坐標(biāo)為6.

(1)求的值.

(2)若雙曲線上一點(diǎn)的縱坐標(biāo)為9,求的面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案