如圖1,在平面直角坐標系中,以坐標原點O為圓心的⊙O的半徑為-1,直線l y=-X-與坐標軸分別交于A,C兩點,點B的坐標為(4,1) ,⊙B與X軸相切于點M. 
(1) 求點A的坐標及∠CAO的度數(shù);       
(2) ⊙B以每秒1個單位長度的速度沿X軸負方向平移,同時,直線l繞點A順時針勻速旋轉.當⊙B第一次與⊙O相切時,直線l也恰好與⊙B第一次相切.問:直線AC繞點A每秒旋轉多少度?
(3)如圖2.過A,O,C三點作⊙O1 ,點E是劣弧上一點,連接EC,EA.EO,當點E在劣弧上運動時(不與A,O兩點重合),的值是否發(fā)生變化?如果不變,求其值,如果變化,說明理由.                                                    
.                       

解:(1)、A(-,0)
∵C(0,-),∴OA=OC。
∵OA⊥OC  ∴∠CAO=450----------------------------4
(2)如圖,設⊙B平移t秒到⊙B1處與⊙O第一次相切,此時,直線l旋轉到l恰好與⊙B1第一次相切于點P, ⊙B1與X軸相切于點N,
連接B1O,B1N,則MN=t,  OB1=  B1N⊥AN ∴MN=3 即t=3-------------2分
連接B1A, B1P 則B1P⊥AP   B1P = B1N  ∴∠PA B1=∠NAB1
∵OA= OB1=  ∴∠A B1O=∠NAB1 ∴∠PA B1=∠A B1O  ∴PA∥B1O
在Rt⊿NOB1中,∠B1ON=450, ∴∠PAN=450, ∴∠1= 900.
∴直線AC繞點A平均每秒300.------------------------------------4分
(3). 的值不變,等于,如圖在CE上截取CK=EA,連接OK,
∵∠OAE=∠OCK,  OA=OC ∴⊿OAE≌⊿OCK, 
∴OE=OK ∠EOA=∠KOC  ∴∠EOK=∠AOC= 900.
∴EK=EO  ,                   

l

 
 ∴=----------------------------------------------4分

 

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,點A在第一象限,它的縱坐標是橫坐標的2倍,反比例函數(shù)y=
8x
的圖象經過點A.正比例函數(shù)y=kx的圖象繞原點順時針旋轉90°后,恰好經過點A,求k的值.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于C點,點B的坐  標為(6,n).線段OA=5,E為x軸上一點,且sin ∠AOE=

1.求該反比例函數(shù)和一次函數(shù)的解析式

2.求△AOC的面積

 

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市豐臺區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

如圖,在平面直角坐標系中,點A在第一象限,它的縱坐標是橫坐標的2倍,反比例函數(shù)的圖象經過點A.正比例函數(shù)y=kx的圖象繞原點順時針旋轉90°后,恰好經過點A,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(四川巴中卷)數(shù)學(解析版) 題型:解答題

如圖,在平面直角坐標系中,一次函數(shù)的圖象與y軸交于點A,

與x軸交于點B,與反比例函數(shù)的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐

標為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆湖南省八年級反比例函數(shù)測試數(shù)學試卷(解析版) 題型:填空題

如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內的A、B兩點,與x軸交于C點,點B的坐  標為(6,n).線段OA=5,E為x軸上一點,且sin ∠AOE=

1.求該反比例函數(shù)和一次函數(shù)的解析式

2.求△AOC的面積

 

查看答案和解析>>

同步練習冊答案